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a b s t r a c t

Wind and solar power have experienced rapid cost declines and are being deployed at scale. However,
their output variability remains a key problem for managing electricity systems, and the implications of
multi-day to multi-year variability are still poorly understood. As other energy-using sectors are elec-
trified, the shape and variability of electricity demand will also change. We develop an open framework
for quantifying the impacts of weather on electricity supply and demand using the Renewables.ninja and
DESSTINEE models. We demonstrate this using a case study of Britain using National Grid's Two Degrees
scenario forwards to 2030.

We find the British electricity system is rapidly moving into unprecedented territory, with peak de-
mand rising above 70 GW due to electric heating, and intermittent renewable output exceeding demand
as early as 2021. Hourly ramp-rates widen by 50% and year-to-year variability increases by 80%, showing
why future power system studies must consider multiple years of data, and the influence of weather on
both supply and demand. Our framework is globally applicable, and allows detailed scenarios of hourly
electricity supply and demand to be explored using only limited input data such as annual quantities
from government scenarios or broader energy systems models.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

There is wide agreement that greenhouse gas emissions from
the energy sector must be reduced and eventually eliminated if
climate change is to be limited to safe levels [1]. Renewable gen-
eration, in particular solar photovoltaics (PV) and wind, are now
poised to take a key role in this energy system transition. Their
costs have fallen substantially so that they are now competitive
with fossil-fired generation in many parts of the world [2]. Global
wind and solar capacity has grown from 80 to 790 GW between
2006 and 2016 [3]. This provides hope, as moving electricity gen-
eration to renewables, followed by electrification of other key
sectors (notably heat and transport) is widely thought to be the
most feasible way to rapidly reduce energy sector emissions [4,5].
While other options such as nuclear, carbon capture and storage
(CCS) and biofuels were expected to play significant role, they are
either no longer cost-competitive [3,6], or have failed to become
market-ready [7]. However, wind and solar power are dependent
ell), stefan.pfenninger@usys.

r Ltd. This is an open access article
on weather and thus variable (or intermittent), fluctuating at
timescales ranging from minutes to hours to multiple days [8], as
well as across years and decades [9,10]. To plan and manage the
transition to high shares of renewable generation, it is imperative to
better understand this variability and its impacts on the power
system.

It is important to consider the range of weather conditions that
affect both wind and solar power generation as well as electricity
demand with a single, consistent dataset. We demonstrate a
framework for quantifying these changes using open-source
models and global open datasets, to maximise the ease of repro-
ducibility. We demonstrate this using Britain as a case study, as the
country is rapidly decarbonising its power system [11], has strong
targets for renewables penetration, and has good availability of
historic data spanning multiple decades.

The make-up of Britain's electricity has changedmore in the last
five years than in the 50 years from 1950 to 2000 [11,12]. This is a
necessary first step in the transition to a clean energy future [13,14],
but leads to many open questions on how to manage a highly-
renewable power system [15]. Fig. 1 shows the supply mix
simplified down to three distinct categories, and how weather-
dependent renewables are anticipated to increase in importance.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Britain's electricity generation mix simplified to three categories. Historic data
from 1950 to 2015 from BEIS11 [18] and projections from 2015 to 2030 from National
Grid's Future Energy Scenarios [16,17]. National Grid's least and most ambitious sce-
narios are shown; their other scenarios lie within this range. Intermittent Renewables
consists of wind, solar and marine; fossil fuels include plants with carbon capture and
storage (CCS).
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Between 2010 and 2015, renewables more than quadrupled from
3% to 14% of the supply mix. National Grid's Future Energy Sce-
narios project that this share could quadruple again in the ten years
to 2027, reaching 30e57% [16,17].

These recent changes have had profound impacts on demand
net of renewables, as seen in Fig. 2. Electricity demand has been
falling in the UK for several years, which is widely attributed to a
combination of improving energy efficiency and the economic
recession [19]. Net demand is now a quarter lower than its peak in
2005, bringing the amount of supply from ‘conventional’ genera-
tors back to levels not seen since the 1980s.

This paper considers how the future progression of these
changes can be modelled at high temporal resolution using open
data and models with global reproducibility. We develop a frame-
work and use it to model the National Grid's Future Energy Sce-
narios forwards to 2030 to show how different and variable the
British power system may become in little over a decade.
Fig. 2. Gross electricity demand in Britain and demand net of renewable generation (i.e. dem
the 1-year rolling average.
2. Background

The increasing deployment of both wind and PV across Europe
means that power systems are becoming highly dependent on the
weather. To better understand this impact, detailed modelling of
wind and PV generation with high resolution in space and time is
becoming increasingly important. This need is driving a conver-
gence of the energy and meteorological research communities.

Recent work in the UK and Europe has used global reanalysis
data to simulate wind power, for example, examining the correla-
tion between generation across Europe [20] and developing vali-
dated generation time series for specific countries [21]. The
Renewables.ninja platform uses a consistent method to simulate
both wind [22] and PV power [23] with calibration, as does the
European Commission's more recent EMHIRES project [24,25]. In
the UK specifically, past studies have looked at the impact of large-
scale atmospheric circulation patterns on wind farm output [26],
analysed the decline in wind farm output as they age [27], and
examined extreme wind power production statistics [28]. These
studies are limited, however, in that they look at only one part of
the power system in isolation, such as wind generation, without
consideration of power demand and the technical and economic
requirements of other generating technologies.

Energy and power system models, on the other hand, model an
entire system and its interactions, and can thus determine the
combined effect of different renewable generation options on
metrics such as total system cost or on power prices. To keep pace
with the growing importance of variable renewable generation,
energy modellers have been moving from average annual or sea-
sonal capacity factors to real time series data [29e31]. By doing so,
models can capture correlations such as low wind output and low
PV production occurring simultaneously. One common short-
coming of recent studies, however, is that they are limited to just a
single year [32,33] or less than ten years [34e37]. This is primarily
due to the increasing computational requirements of running what
are typically complex optimisation models with ever larger data-
sets. However, it means that such work likely misrepresents the
true extent of supply security and balancing concerns caused by
longer-term weather variability, both in terms of accuracy to the
‘true’ long-term mean, and the range of conditions experienced.

Recent work is beginning to address this shortcoming. Bloom-
field et al. [38] model a simplified British power system across
several decades but only consider wind power, neglecting the
increasingly important role of PV; Pfenninger [31] examines the
inter-annual variability of both wind and PV over 25 years in a UK
power system model. However, none of these studies consider the
influence of weather on power demand. Using the British problem
of the “cold calm spell” as an example [9,39], these studies would
and minus wind and solar output). Thin lines show monthly averages, thick lines show
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identify the “calm” (due to low wind speeds), but miss the “cold”
(and thus high electricity demand). While studies are now starting
to analyse this in a retrospective fashion [40], power systems
worldwide are undergoing a period of intense change, so it is un-
reasonable to expect that the future will continue to look like the
past.

An important area that lacks attention is the potentially sub-
stantial change to the shape of future demand. Modelling future
demand is a significant problem in itself: many studies which
project future power demand neglect the possible changes to
consumption patterns and simply scale existing profiles [41]. Past
work has either projected future demand from single sectors or
consumers [42e44], or has been limited to predicting individual
features such as load duration curves [45,46] or peak load [16,47].
State-of-the art methods to generate more realistic future load
profiles either apply trend extrapolation [48,49], model specific
appliances and sectors [50e52], or focus on extreme events and the
relationship between demand and temperature [53e55]. An
extension is the full decomposition of demand into representative
user groups within sectors, to generate new synthetic total demand
profiles [41].

To summarise, past work on the influence of weather on power
demand and production has either been limited by considering
only part of the system over a long time period, or the system for a
small sample of years. Furthermore, most studies have focussed on
supply-side changes, neglecting the changing nature and shape of
future demand. Here, we combine an analysis of the three key parts
of the future power system affected by weather ewind generation,
PV generation and demande and do so for a period of 25 years with
hourly data. This allows us to quantify the contribution of
embedded generation to lowering net demand and the impact of
weather on both power demand and supply over multiple decades,
thus capturing a fuller range of weather events.

A final consideration that limits the enduring applicability of
previous studies is their reluctance to use open-source models and
provide open-access data. Transparency and reproducibility are of
paramount importance for energy research given its impact on the
long-term planning and design of systems that affect millions of
consumers and influence the speed with which climate mitigation
progresses [56e58]. In this studywe explicitly use only open source
tools, and our complete set of results is made available on www.
renewables.ninja.

3. Methods

We develop a framework for modelling the impacts of weather
on electricity supply and demand. This has fourmain requirements:

1) historic data on demand, temperatures, and output from
renewable generators (for calibration);

2) a high-level scenario for the future evolution of the system (for
projection);

3) modelling the hourly national demand using partial decompo-
sition and time-series data on temperatures (holding constant
societal factors such as economic activity, population, the mix of
appliances and human behaviour);

4) modelling the output from wind and solar generators using
contemporaneous time-series data on other weather variables
(holding constant technical factors such as installed capacity, its
location and vintage).

Using only historic data would mean the economic activity and
1 The UK government's Department for Business, Energy & Industrial Strategy.
technology mix of 2015 can only be studied with the weather of
2015. It is necessary to delineate the meteorological and societal
factors to quantify the range of conditions that could have been
experienced in 2015 if weather conditions had been different, and
to explore how these conditions will evolve in future scenarios.

Demand is simulated using the DESSTINEE model [41],2 which
requires data on annual electricity consumption per sector, the mix
of end-use technologies and temperatures. Wind and solar supply
is modelled using the Renewables.ninja platform [22,23],3 which
requires data on the spatial distribution of installed generators,
their characteristics, and historic weather data from reanalysis
models. We use the Two Degrees scenario from National Grid's
Future Energy Scenarios to drive our future projections [16].

Together, this framework captures four key factors influencing
demand: demand for electric heating due to variation in temper-
ature; changes in technology mix for heat and transport; other
sectoral changes such as efficiency improvement; and changing
weather fromyear to year. It also captures technological changes on
the supply side: the increase of installed wind and solar capacity;
the changing population of wind farms (e.g. moving further
offshore); and technology improvements. The framework does not
capture changing weather patterns due to climate change, treating
weather of the past as being representative of weather in the
future. Studies show limited or no change in either wind [59e61] or
solar [10,62] resources over the coming 50 years. Similarly, we do
not capture weather conditions that are outside of the near-term
history (e.g. 1 in 100 year events), and would instead require syn-
thetic weather generators, or datasets with longer historical
weather record which are beginning to emerge.

Fig. 3 summarises the framework we present, with the data
sources andmodels employed, and the links between these needed
to create the results.

We use Britain as a case study, but the method and tools can
equally be applied in other countries to analyse the risks and
challenges that increasing the weather-dependence of electricity
supply and demand will cause. The case study covers 25 years from
1991 to 2015, as that is the period for which historic half-hourly
demand data exists.

Our modelling, and many of the results in the following section,
was divided into three phases:

1) Historic: a retrospective study of 2005e15 using contempora-
neous weather data and annual sectoral demands to validate
and calibrate the models;

2) Contemporary: simulating 2015 with all years of weather data
(from 1991 to 2015) to hold the economic, behavioural and
technological factors constant and look at the impacts of
weather on present-day supply and demand.

3) Future: using National Grid's projections for 2020, 2025 and
2030 with all years of weather data to investigate the impacts of
the British electricity system becoming more weather depen-
dent in the near- and mid-future.
3.1. Historic demand data

Half-hourly data from 1991 to 2015 was successively gathered
over the last two decades from National Grid, most recently from
Ref. [63]. The measure of national consumption (labelled as INDO
and more recently ND) was used, which excludes hydro storage
2 Demand for Energy Services, Supply and Transmission of Electricity in Europe.
https://wiki.openmod-initiative.org/index.php?title¼DESSTinEE.

3 https://renewables.ninja.

http://www.renewables.ninja
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Fig. 3. Schematic of the framework used to assess the impact of weather variability on
electricity supply and demand using free and open data and tools.
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pumping and exports. Around 2 days of data were missing per year
on average, and these were inferred from the other variables given
by National Grid, as detailed in Ref. [11].

During this 25-year period the British electricity system has
been organised as the Electricity Pool and NETA4 which covered
only England & Wales, and then BETTA5 from 2001 which added
Scotland to cover the whole of Great Britain (GB) [64]. Prior to 2001,
demand for GB is not available, and so was regressed from demand
in England andWales (excluding Scotland) using data from 2001 to
12 where both England & Wales and whole-GB demand was
available. Full details of this regression are given in the
Supplementary Material.

3.2. Temperature data

An hourly time series of national average temperature was
created using the T2M variable (temperature at 2m above ground)
from the MERRA-26 reanalysis [65]. This was extracted for all grid
points within the British mainland, implying around 100 locations
on a rectangular grid of 0.5� latitude by 0.625� longitude. For each
hour, the temperatures at these points were averaged, weighted by
the population density surrounding each point to create an
appropriate measure for the influence of temperature on building
energy consumption. The Gridded Population of the World
(GPWv4) [66] dataset was used, and aggregated to the MERRA-2
grid using the Raster package in R.

This method was used in preference to local ground-based ob-
servations because of MERRA's global coverage, reducing the bar-
rier to translating this research to other world regions. To verify the
4 New Electricity Trading Arrangements.
5 British Electricity Trading and Transmission Arrangements.
6 Modern Era Retrospective-Analysis for Research and Applications.
validity of this method, we compared the resulting national time-
series to the daily average temperatures from the HadCET7 dataset
[67]. Our whole-GB daily averages are 0.7± 0.3 �C colder than
HadCET, with a slightly larger discrepancy in winter than in sum-
mer, and no statistically significant long-term trend across the 25
years. This can be explained by the difference in scope e our data
includes the colder regions of northern England and Scotland,
whereas HadCET focusses on central and southern England.

Fig. 4 plots the average temperature across each day of the year,
with the variability seen across the 25 weather years. The average
temperature in December ranges from �0.1 to 7.6 �C (10the90th

percentile), while July temperatures have a narrower range from
13.6 to 18.9 �C.
3.3. Future scenario

To model the future composition of electricity demand and
supply we use National Grid's Two Degrees scenario, which rep-
resents a prosperous and sustainable pathway for the UK [16]. Fig. 5
charts the evolution of annual electricity demand, highlighting the
electrification of heat and transport. At present, 7% of British homes
(~1.8 million) are electrically heated, with 60,000 using heat
pumps. The number of plug-in vehicles in the UK reached 120,000
in 2017 and these now represent 2% of new car registrations [68], as
the dramatic fall in the cost of batteries has made them more
affordable [69]. The scenario sees very rapid expansion in both
sectors, promoted with government support schemes to kick-start
the decarbonisation of heat and transport. Installed numbers are
projected to more than double every year until 2030.
3.4. Modelling demand

We synthesise demand profiles for current and future years
using DESSTINEE (Demand for Energy Services, Supply and Trans-
mission in EuropE), a model of the European energy sector to 2050.
This converts demand for energy services into hourly profiles of
demand through a partial decomposition approach. It is described
further in Ref. [41], and is available as a set of open-sourceMicrosoft
Excel spreadsheets.8

The time series of demand for a given day of year (d) and hour of
day (h) is calculated for each sector (s) of the economy as the
product of a 24-h diurnal profile for demand in that sector, a scale
factor to account for weather and societal factors, and the overall
energy consumption of that sector, as in equation (1):

demandd;h ¼
X
s

profiles;d;h$scalars;d$energys (1)

Daily profiles of 24 periods are specified for each sector and end-
use, with variants for summer/winter and weekday/weekend. The
four profiles that define each sector are then assigned to each day of
the year to create a 365� 24 matrix (profiles). Days of the year are
classified based on whether they fall in summer or winter (defined
by the use of British Summer Time or Greenwich Mean Time), and
whether they are weekday or weekend. Half of electric vehicles are
assumed to be charged after each drive (daytime and evening), and
half use smart-charging (overnight).

The variable scalars,d is a matrix of values that represents when
holidays occur and the demand reduction seen during those days
across each sector. In this implementation it contains values for
common holidays (Easter, Christmas, New Years, and a triangular
7 Hadley Centre Central England Temperature.
8 https://wiki.openmod-initiative.org/index.php?title¼DESSTinEE.
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Fig. 4. Inter-annual variability of daily average British mainland temperature during 1991e2015.

Fig. 5. Future annual electricity demand separated into end-uses. Projections are from
National Grid's Two Degrees scenario [16]. Circles highlight the years we focus on in
later results. For context, the number of pure-battery and plug-in hybrid electric ve-
hicles (EVs) and residential heat pumps (HPs) is given for these years.
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distribution through August (centred on August 16th)) to represent
summer holidays. For heating and cooling end uses, scalars,d also
accounts for ambient temperature, using the normalised number of

heating degree days, HDDd
.
HDDd

, or cooling degree days,

CDDd
.
CDDd

. These are calculated with the temperature data from

Section 3.2.
The variable energys is defined by the annual demands for

electricity from National Grid's Future Energy Scenarios (Section
3.3), broken down by sector (residential, commercial, agriculture,
industrial, road and rail) and by end-use for building sectors (space
heating, water heating, cooling, and all other appliances). The
model generates annual profiles (8760 periods) for each sector, and
then sums these together to give the national demand profile. To
preserve the unique and anomalous features of historic load curves,
the residuals between actual and simulated load from historic years
are calculated, then scaled up and applied to the synthetic profiles
as described in Ref. [41].

For validation, this modelling process was compared to National
Grid's historic data for the years 2005e15, using our weather data
for these years. Fig. 6 shows the diurnal profile in each season for
three years of this sample, comparing the metered and modelled
data. DESSTINEE captures the broad trends, particularly the differ-
ence in winter demand relative to other seasons, which varies be-
tween years due to temperatures. When synthesising Britain's
demand for 2015, residuals were normally distributed with a
standard deviation of ±1.9 GW (5.5% of the mean). These values are
dominated by shape errors during spring and systematic errors on
particular days (public holidays which are treated as regular
weekdays, Christmas and New Year). When the residuals are added
back the average error across the 11 years declines by 0.2e0.3 GW.
More extensive validation can be found in the online
Supplementary Material.

The results of this study are based on two sets of projections. A
‘snapshot’ scenario was created where individual weather years
(1991e2015) were randomly assigned to future projection years
(2016e2040) to give one potential realisation of future demand. A
second ‘ensemble’ simulationwas created, where selected scenario
years (2015, 2020, 2025 and 2030) were simulated using each of the
25 weather years, to give an estimate of the long-run average
behaviour.

3.5. Modelling renewable outputs

Historic wind and solar output from 2009 to 2015 was taken
from Elexon's ‘FUELHH’ tables [70] and National Grid's embedded
generation data [63], and are combined as in Ref. [11]. To simulate
the output of the current and future installed renewable portfolio,
we use the Renewables.ninja models described in Refs. [22,23]. This
generates hourly time series from individual wind and solar farms,
which are then aggregated up to national level. Historic weather
data (specifically temperature, wind speeds and solar irradiance)
are taken from the MERRA-2 reanalysis [65] for the years
1991e2015 to give a 25 year dataset of meteorological conditions.

A crystalline silicon solar PV system was modelled at each
MERRA-2 grid point due to the lack of precise data onwhere each of
Britain's 910,000 systems is located [71]. The orientation and
inclination of each panel were drawn from normal distributions
derived from observed metadata from PV installations in Europe, to
represent the variability in the national fleet. The underlying pa-
rameters, and a mathematical description of the conversion from
irradiance to power output are given in Ref. [23].

The 590 individual wind farms operating in Britain were
modelled based on their location and characteristics such as tur-
bine model and hub height. Missing metadata were inferred using
multi-variate regression as described in Ref. [22]. For example,
missing hub heights were estimated using the turbine capacity and
year of installation. It is expected that wind capacity factors (and



Fig. 6. The seasonal and diurnal profiles of demand in Britain, comparing the synthesised demand from DESSTINEE with historic data.
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output patterns) will evolve over time due to the move towards
larger machines predominately placed in deep offshore areas
[22,72]. We model this using additional simulations of the wind
farms which were under construction or in the planning pipeline as
of December 2016, with onshore and offshore farms modelled
separately. These fleets were called ‘near-term’ and ‘long-term’ in
Ref. [22], but we use an updated dataset (running to the end of 2016
instead of 2014) which is available online.9

We took National Grid's projections of installed onshore and
offshore capacity [16] for each year and allocated this to the three
named fleets. The hourly profile of total wind output was then
governed by the ratio of current, near-term and long-term capacity
(both onshore and offshore). For a given future installed capacity of
wind (K), the time-series of output (Pfuture,h) is determined from the
simulated capacity factors (CF) as:

Pfuture;t ¼ Kcurrent$CFcurrent;t þ Knear$CFnear;t þ Klong$CFlong;t
(2)

where the subscripts current, near and long refer to the three fleet
simulations, and t is time in hours (1… 8760). Using offshore farms
as an example, the capacity (inMW) associated to the current, near-
term and long-term fleets was determined as:

Kcurrent ¼ 5100

Knear ¼ maxðK � Kcurrent ; 16000Þ

Klong ¼ K � Kcurrent � Knear (3)

The capacity of the current fleet was held constant at 2016 levels
(8050MW onshore, 5100MW offshore). Additional capacity was
preferentially assigned to the near-term future fleet until reaching
its capacity limit (1550MW onshore, 16,000MW offshore) was
exhausted. Further new farms were assumed to be representative
of the long-term future fleet.

A key advantage of this novel dataset is that its quality has been
verified through extensive validation against historic measured
9 European Wind and PV datasets v1.1:https://www.renewables.ninja/
downloads/.
power output data, so the resulting national CFs are improved
through bias correction. In previous work, we find that Renew-
ables.ninja can simulate the hourly capacity factors for the British
wind fleet to an accuracy of ±4.5% (hourly root mean square error)
with a correlation of R2¼ 0.95 [73], and hourly capacity factors for
the British solar fleet to an accuracy of ±8.2% and a correlation of
0.83 [23]. Correction factors are required because of systematic bias
in the input meteorological data, and the coarse spatial resolution
of the MERRA-2 model preventing it from capturing local terrain
effects such as airflow drag. Wind speeds were therefore reduced
by 17% and solar irradiance by 2%, as detailed in Refs. [22,23].

4. Results

We first examine the changing level and shape of demand, fol-
lowed by the variability of increasingly weather-dependent gen-
eration, before combining both to analyse demand net of wind and
solar generation. Two important insights become evident. First,
electrification of heating and transport causes not just the absolute
level of demand to increase, but also its shape and variability to
widen. Second, with the addition of PV and wind capacity, net
demand will look fundamentally different by 2030, where we can
expect to see net negative demand and substantial pressure on
baseload nuclear generation.

4.1. Gross demand

Fig. 7 shows the seasonal variability in historic demand (shaded
areas) and our future simulated demand for 2020, 2025 and 2030.
The simulated mean demands in 2020 and 2025 remain within the
historical range; however, by 2030 mean winter demand increases
beyond the range of historically observed demand. The changing
shape of the seasonal profile is of key importance e mean January
demand increases by 9.4 GW relative to 2015 (24%), while summer
demand remains effectively unchanged. This is due to the sub-
stantial projected increase in residential heat pumps (see Fig. 5).
Mean peak demand increases in line with average demand, with
the mean simulated January peak above 65 GW.

The increasing seasonality of gross demand is highlighted in
Fig. 8. Historically, seasonal demands have changed in step with
overall demand. However, our future projection shows increasingly
divergent seasonal trends. Winter demand (and to a lesser extent

https://www.renewables.ninja/downloads/
https://www.renewables.ninja/downloads/


Fig. 7. The seasonal variation in historic and simulated future demand. Shaded areas
show the historic range from 2005 to 15 while lines show simulations from three years
averaged across all weather years. Dotted lines show peak demand within each month,
solid lines show the mean.

I. Staffell, S. Pfenninger / Energy 145 (2018) 65e78 71
autumn and spring demand) rises substantially, while summer
demand remains flat. This increasing seasonal variability poses
problems for power systems. Economic cycles and technological
factors such as efficiency improvements over the last 20 years have
made little change to the seasonal distribution of demand. How-
ever, with an increase inweather dependency of electricity demand
due to electrification of space heating, seasonal weather emerges as
an important factor. The increasing influence of weather is visible in
the year-to-year changes in Fig. 8. Summer demand varies little
from one year to the next, except during economic recessions.
Other seasons vary more strongly due to temperature, with the
average absolute year-to-year change increasing from 2.0 TWh in
Fig. 8. Total electricity demand summed over each season, showing the historic evo-
lution and projections up to 2030, using weather years randomly assigned to each
projection year.
2015 to 3.6 TWh in 2030.
Fig. 9 shows mean daily demand and its variability across the 25

simulated weather years, for the current 2015 system and for 2030.
Weekend demand is lower in general, so weekdays are plotted
separately (along with the Christmas period of December 25th to
January 1st). The seasonal trends outlined above are visible along
with substantial year-to-year variability, particularly in winter
when heating needs drive demand. This variability increases sub-
stantially by 2030, with demand on a January day ranging from
below 40 GW to above 60 GW depending on the weather. For the
same reason, the maximum expectation of daily peak demand is
expected to widen from the range of 38e59 GW in 2015 to
38e72 GW in 2030.

4.2. Renewable output

Fig. 10 shows the daily mean capacity factor of our simulated PV
and offshore wind fleets for Britain in 2030 (onshore wind is
omitted as it exhibits similar variability to offshore wind). Visual
comparison with Fig. 9 shows immediately obvious patterns: PV
generates in summer, wind generates more equally throughout the
year on average, with slightly higher output inwinter. Nevertheless,
the variability in both PV and wind output are substantial: a winter
day can see capacity factors ranging from anywhere slightly above
0% to almost 100%. Both of these extremes are crucial for net de-
mand: the variability of wind, with a higher installed capacity in
2030 (41 GW, versus 27 GW for PV) imposes stress on the rest of the
power system, while PV generation falls short in winter, which is
precisely when demand increases the most.

Fig. 11 shows the correlation between national wind and PV
output for the simulated 2030 fleets, using daily mean generation
across all 25 simulated weather years. To some degree, lower wind
output coincides with higher PV output and vice versa. As a
consequence, the combined generation from PV and wind is sub-
stantially lower than their combined capacity, reaching a peak of
40.65 GW (95th percentile of 31.83 GW) from a fleet with 68.3 GW
of combined installed capacity. The scatterplot (which is summar-
ised by hexagonal bins) shows two distinct trends. Summer is
characterised by 4e6 GW of solar and 7.5e12.5 GW of wind output,
whilst winter is by 0e1 GW of solar and 5e35GW of wind.

4.3. Net demand

A crucial metric for the whole power system is not the indi-
vidual elements considered thus far, but rather net demande gross
demand after subtracting weather-dependent PV and wind gen-
eration. The remaining net demand must be met by other genera-
tors, some of which have operational constraints that prevent them
from rapidly adjusting output to fluctuations in net demand (i.e.
nuclear reactors). Fig. 12 shows an overview of monthly average
demand and its evolution since 1995, with our projections through
to 2030. From 2005 on, we see a small fraction of total demand met
by wind and solar generation, rising to 15% by 2015. This fraction
becomes increasingly significant: 25% in 2020, 38% in 2025 and 44%
in 2030. In 2030, the share of wind and solar averages 39% inwinter
and 48% in summer.

Error bars show the standard deviation across the 25 historical
weather years. The monthly-average solar output does not vary
from year to year. Gross demand begins to have noticeable vari-
ability in winter, but the main volatility comes from wind power.
The difference between a good and bad year (defined as ±1 stan-
dard deviation) could mean an extra 8 GW of conventional gener-
ation needed over the course of January.

Net demand e the grey area in Fig. 12 e not only shrinks as
renewable generation expands, but its variability also increases,



Fig. 9. The variability from year to year in gross electricity demand in 2015 (top) and 2030 (bottom) simulated across 25 weather years. The spread in each fan chart represents the
expected frequency of occurrence based on weather from 1991 to 2015, while lines show peak demand on each day.

Fig. 10. Year-to-year variability of daily PV and offshore wind generation. The spread in each plot represents the expected frequency of occurrence over the period of 1991e2015.
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even on the monthly scale shown here which smooths out the
shorter-term variability. Net demand in the 2015 ensemble
simulation averages 28.9± 1.1 GW (±4%), which changes to
26.6± 1.7 GW (±6%) in 2020, 22.9± 2.5 GW (±11%) in 2025 and



Fig. 11. The correlation between daily-average wind and solar output over 25 historical
weather years, simulated with 2015 installed generation capacities.
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22.2± 3.1 GW (±14%) in 2030.
Fig. 13 shows the average diurnal profile of demand in summer

and winter based on historic data and future simulations with 25
years of weather conditions. The greatest changes can be seen in
summer, as the coordinated output of a growing PV capacity re-
duces average summer daytime demand to below the levels seen
overnight. Dotted lines in the figure show the profile for the 10th
percentile for 2015 and 2030 (i.e. 1 in 10 days would lie below this).
In 2030, overnight demand in winter and midday demand in
summer would routinely fall to (or below) zero.
Fig. 12. The seasonal variation in demand and supply fromwind and solar power. Each shad
at the right edge. The left group shows historic data, the central bar shows 2015 simulated w
show the future projections simulated across all weather years. For ensembles, the mean a
them.
Fig. 14 shows the year-to-year variability of daily mean net de-
mand, with the expected frequency of occurrence based on 25 years
of historical weather conditions. The current situation (2015, top
row) is eminently manageable; however, in just five years net de-
mand on weekends in 2020 already starts to reach the region of
firm nuclear generation (albeit with a low frequency of occurrence,
of 1 day in 4 years). By 2025, nuclear capacity is lower as some
existing reactors retire before new build is expected to be online;
however, the situation worsens further with a frequency on
weekends of 4.8 days/year. In addition, by 2025, weekends might
see net negative demand e that is, overproduction by PV and wind
generation alone, yet again with a low frequency of occurrence (1
day in 2 years).

In 2030 (bottom row of Fig. 14) we see such negative demand
events both on weekdays and weekends, with higher expected
frequency of occurrence e 1.1 and 3.4 days/year, respectively, and
net demand hitting the baseload “floor” of nuclear becoming a
regular occurrence: during the summer months, median net
weekend demand is almost at the level of nuclear (24 days/year
expected frequency of net demand below nuclear generation). This
implies that on half of weekend days we would expect to see
curtailment of either nuclear or renewable output unless there
were sufficient expansion of storage, interconnection or demand-
side response.

It is important to keep in mind that Fig. 14 show daily means.
Hourly demand shows greater variation and will reach more
challenging extremes. Fig. 14 shows the distribution of hourly net
demand values for historic years, and using the 25 weather-year
ensemble for the current, 2020, 2025 and 2030 scenarios. The
lowest net demand observed in 2015 was 14.3 GW, and considering
the range of weather conditions that Britain experiences it could be
expected that 1 h per year could fall below 12.9 GW. Already by
2016 this minimum demand had fallen by 1.5 GW [11], and it is
expected to continue falling to just 6.3 GW by 2020, and become
negative beyond 2025, implying wind and solar output is higher
than total national demand. At the other extreme, peak demand is
expected increase gradually from 50.4 GW to 51.8 GW between
2015 and 2025 (across all weather-years, 2015 actual was 51.9 GW),
before accelerating more rapidly after 2025 to 56 GW. Finally, the
ed area shows the monthly averages from January at the left edge through to December
ith the ensemble of all weather years (for comparison to 2015 historic), and right group
cross all weather years is presented, with bars showing the standard deviation across



Fig. 13. Evolution of the average diurnal profile in January (left) and July (right) for demand net of renewables. Solid lines show the mean across all days in the month (and across all
weather years for future ensemble simulations), while dotted lines show the tenth percentiles.
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red lines in Fig. 14 show the extremes that occurred once in the 25
years of weather data. These are currently 4 GW lower and 7 GW
higher than the expected values for any given year, and grow wider
to 9 GW below and 12 GW above by 2030.

Ramping at hourly scales is an issue for the stable operation of
Britain's future power system. Fig. 16 shows the distribution of one-
hourly ramps in net demand in the current system, and for the
2020, 2025 and 2030 scenarios. The width of the frequency dis-
tribution increases e by 2030, ramps on the order of ±15 GW are
possible, while ramps of lower magnitudes become more frequent.
However, given that wind and PV generation are mostly uncorre-
lated (see Fig.11), thewidening of the spread is less severe than one
might expect. Nevertheless, the increasing magnitude of ramps
expected to occur once a year on average (top part of Fig. 16) must
be considered in planning backup and storage capacity for the 2030
power system.
5. Discussion

The results shown in Figs. 14 and 15 suggest that perhaps the
shorter one-hourly time scale is not as serious a problem, whereas
the encroachment of dailymean net demand onto nuclear baseload
e and eventually to the zero demand mark (Fig. 13) e foreshadow
more difficult planning choices for the power systems in the years
to come.

A naïve argument would be that Britain should therefore not
aggressively decarbonise with renewable electricity and the elec-
trification of other sectors. However, it is important to note that this
paper represents the starting point of how a ‘dumb’ electricity
system would respond: a 20th century system in which supply
unthinkingly follows load, with no ‘smart’ system elements
enabling demand to adapt to changes in supply. Our results
therefore add to the body of evidence that justifies the need for new
flexibility options to help balance and harness this output [74e76].

Interconnection, storage and load-shifting form the ‘founda-
tions of clean energy’ proposed by King et al. [77]. Demand-side
management from consumer appliances up to heavy industry,
fleets of electric vehicles with coordinated charging, electricity and
thermal storage could form a substantial resource for shifting de-
mand, balancing renewables and reducing peak demand [78e80].
In their Two Degrees scenario, National Grid propose that by 2030,
Britain could host 19 GW of interconnection, 9 GW of storage and
3 GW of demand-side response; a total of 30 GW of flexibility, up
from 9GWat present [16]. Similarly, the increasing deployment of
heat pumps forms a critical component of projected demand
changes; however, several factors influence their effect on demand.
First, through combination with heat storage, heat pumps them-
selves could provide balancing by shifting their electric load to aid
grid stability [81]. Second, their impact on demand is critically
dependent on future improvements to both building thermal effi-
ciency and heat pump efficiency. Best-in-class models deliver a
coefficient of performance (COP) of 5.6, but the average across
currently available pumps is a COP of just 3.25 [82]. Future research
improving on our framework could focus on the untapped potential
of a more coordinated deployment of better heat pump systems,
and their use as flexibility providers.

Future work could further explore the instantaneous shares of
flexible and inflexible demand across time, which may substan-
tially change as electric heating and transportation allow flexibility
through heat storage and optimised electric car charging patterns.
In addition, our time series of demand is a static point-estimate.
However, an understanding of how much demand could be shed
for a given price, i.e., a dynamic price-dependent demand curve, is
likely to become increasingly important with an increasing share of
flexibility sources in the system. This would allow an economically
realistic assessment of the potential for demand shifting to balance
variable renewable generation in future work.
6. Conclusions

We build a framework to quantify the impacts of weather on
electricity supply and demand, using the Renewables.ninja and
DESSTINEE models, and demonstrate its application with a case
study of Britain's power system through to 2030. This quantifies
changes to shape and variability of electricity demand driven by
electrification of heat and transportation; and to demand net of
renewable output (which must be met by ‘conventional’ generators
on the system) because of increasing generation from weather-
dependent PV and wind generation. The framework explicitly ac-
counts for correlations in space and time, for example the co-
incidences of cold and calm weather during winter and the anti-
correlation between wind and solar output at seasonal and daily



Fig. 14. Year-to-year variability of hourly average net demand across 25 historical weather years for the current (2015) system and the 2020, 2025 and 2030 scenarios. The green
hatched area shows the capacity (and expected firm output) from nuclear generation based on National Grid‘s projection [16]. The spread in each plot represents the expected
frequency of occurrence over the period of 1991e2015. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 15. The distribution and extremes of hourly demand net of wind and solar, his-
torically and for the future ensemble simulations.

Fig. 16. The distribution of 1-hourly ramps in net demand across all 25 simulated
weather years, for 2015, and for the 2020, 2025 and 2030 scenarios (bottom part), and
the magnitude of 1-hourly ramps with an expected frequency of once per year (top
part).
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timescales [8].
We show that Britain's power system could swiftly move into

unprecedented territory if it follows the rapid decarbonisation ‘Two
Degrees’ pathway from National Grid. In this under-explored ter-
ritory, net zero demand may occur on individual days as early as
2021, and become a common occurrence by 2030, with net demand
reaching levels below the available firm nuclear generation ca-
pacity on most weekends. Peak demand will rise above 70GW and
hourly ramping rates will increase in both magnitude and their
probability of occurrence.

We show that year-to-year variability of net electricity demand
increases by 80% by 2030. This casts strong doubt on past energy
scenario studies using a single or a small number of weather years.
Using just one historical year is tantamount to drawing a single
sample from a large population of widely-distributed weather
years. If we had selected a single year rather than 25 historical
years, we could expect metrics such as peak demand to be ±3%
from the ‘true’ mean; minimum demand net of renewables to be
±13% away; and the number of hours per year with negative net
demand ±23%.

An alternative is to use a mean weather year or typical meteo-
rological year (TMY) in scenario and modelling studies, but this
clearly removes extremes. Successfully dealing with extremes e

such as steep ramps, peak and minimum demands, storage and
balancing requirements over different time scales e is crucially
important for the reliable operation of power systems. Our findings
strongly suggest that other work must consider multiple years of
data to cover this year-by-year variability and the influence of
weather on both supply and demand, or be of limited significance
and validity.

The exact numbers we present in this analysis are arguably of
secondary interest. They are specific to the choice of scenario, as-
sumptions made for the deployment of renewable generation,
electric heating and transport, and the profiles for individual sec-
toral consumption. In other words, they are an exploration of just
one of many possible futures. More relevant are the broad struc-
tural changes to the shape and scale of demand, which contain an
importantmessage to research and industry alike: demand changes
cannot be ignored, and scaling up historic load profiles will yield
potentially unacceptable errors. An important contribution of this
paper is the intellectual framework for quantifying these changes,
using freely and openly available models and datasets which future
work can build on and further refine, both for Britain and any
country or region undergoing rapid energy system transformation.

The framework we present here is globally applicable through
our choice of models and data. The weather variability data come
from the Renewables.ninja platform, which is based on global
reanalysis data. The demand is modelled with DESTINEE, which is
openly available and can easily be parametrised for use in any
country using high-level energy scenarios and projections of future
demand. By allowing the construction of synthetic scenarios of
hourly electricity supply and demand, our approach enables new
research applications to help ensure a reliable power supply as
countries worldwide increasingly rely onweather-dependent wind
and PV generation.
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