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Identifying energy model fingerprints in 
mitigation scenarios

Mark M. Dekker    1,2 , Vassilis Daioglou    1,2, Robert Pietzcker    3, 
Renato Rodrigues    3, Harmen-Sytze de Boer1, Francesco Dalla Longa    4, 
Laurent Drouet5, Johannes Emmerling5, Amir Fattahi4, Theofano Fotiou6, 
Panagiotis Fragkos    6, Oliver Fricko    7, Ema Gusheva    8, Mathijs Harmsen    1,2, 
Daniel Huppmann    7, Maria Kannavou6, Volker Krey    7, 
Francesco Lombardi    8, Gunnar Luderer    3,9, Stefan Pfenninger    8, 
Ioannis Tsiropoulos6, Behnam Zakeri    7, Bob van der Zwaan    4,10,11, 
Will Usher    12 & Detlef van Vuuren    1,2

Energy models are used to study emissions mitigation pathways, such 
as those compatible with the Paris Agreement goals. These models vary 
in structure, objectives, parameterization and level of detail, yielding 
differences in the computed energy and climate policy scenarios. To study 
model differences, diagnostic indicators are common practice in many 
academic fields, for example, in the physical climate sciences. However, they 
have not yet been applied systematically in mitigation literature, beyond 
addressing individual model dimensions. Here we address this gap by 
quantifying energy model typology along five dimensions: responsiveness, 
mitigation strategies, energy supply, energy demand and mitigation costs 
and effort, each expressed through several diagnostic indicators. The 
framework is applied to a diagnostic experiment with eight energy models 
in which we explore ten scenarios focusing on Europe. Comparing indicators 
to the ensemble yields comprehensive ‘energy model fingerprints’, which 
describe systematic model behaviour and contextualize model differences 
for future multi-model comparison studies.

The European Union’s ambition to reach climate neutrality in 2050 as 
part of the European Green Deal1 requires a thorough transformation 
of the full energy–economy system. Insights required for this transi-
tion are obtained from various lines of research, such as analysis of the 
technical mitigation potential, the effectiveness of policy instruments 
and opportunities for system changes given the interests of stake-
holders and institutional barriers2. An important part of quantitative 

information on mitigation pathways is obtained from model-based 
scenario analyses, such as those recently published in the Intergov-
ernmental Panel on Climate Change (IPCC) Sixth Assessment Report3,4.

Still a large spread is associated with the scenario output, which 
originates from many types of uncertainty5,6. Structural uncertainty 
stems from differences in numerous assumptions regarding, among 
others, technological innovation and uptake, market behaviour, 
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energy supply and energy demand. For example, differences in solar 
power deployment under similar emissions levels can be understood 
only when information about wind power (as a potential competitor),  
carbon dioxide capture and storage (CCS) or energy demand reductions 
are provided. This motivates comparing multiple model dimensions at 
the same time. While Harmsen et al.’s six indicators are useful to classify 
models for each indicator individually (that is, one-dimensional), the 
aim of this paper is to characterize the overall model typology (that 
is, high-dimensional)—moving beyond a mere long list of ‘individual’ 
diagnostic indicators, towards developing a comprehensive overview 
or ‘story’ of the model’s behaviour. This requires the analysis to go back 
and forth between many different aspects of the same model. In addi-
tion, a comprehensive overview of model behaviour would include an 
extension of the existing list of diagnostic indicators to a higher level 
of detail (Supplementary Information A.6).

Framework and fingerprints
Here we quantify typical model behaviour in a framework that we 
colloquially refer to as the model’s ‘fingerprint’. It assesses five key 
model behaviour dimensions: responsiveness, mitigation strategies, 
energy supply, energy demand and costs and effort. Each dimension 
is subsequently expressed in several diagnostic indicators, as shown 
in Fig. 1. The set of diagnostic indicators extends previous work8,19 with 
new indicators to obtain a more complete and multi-dimensional per-
spective on model behaviour (Supplementary Information A.6 for 
a comparison with earlier work). For example, the ‘responsiveness’ 
dimension describes more than only tax response (R1), adding the 
speed of response (R2–3) and scenario sensitivities (R4 and R5). Other 
notable extensions on previous work are including carbon capture 
(M3), the role of non-CO2 (M4), more details on the energy supply mix 
(Es1–7), electrification of end-use sectors (Ed1–3), hydrogen use (Ed4) and 
demand shifts (C3). In addition, all indicators are computed from a more 
extended set of diagnostic scenarios (Methods), containing scenario 
variation beyond only varying carbon price trajectories.

The framework’s principle is to compare a model’s scenario 
range (Fig. 1, yellow shaded) to the ensemble statistics in terms of its 
medians (η) and standard deviations (σ), yielding the range of typical 
(relative) model behaviour: the area towards the outer ring indicates 
above-median (up to ƞ + 2σ) output and the area towards the circle cen-
tre indicates below-median (down to ƞ − 2σ) output. Whereas scenario 
ensembles of energy models are rarely normally distributed, defining 
the range this way does ensure more intuitive equal ranges above and 
below the median. The diagnostic exercise performed to fill these 
diagrams includes eight different energy system models, involving 
ten diagnostic scenarios tailored to explore different model aspects. 
The scenarios (Methods and Table 3) have a high carbon price, aimed 
at approximating the Paris Agreement goals and the European Union’s 
climate neutrality goal.

In Figs. 2 and 3, one can see the outcomes of the framework for 
the eight involved energy system model versions. For illustration pur-
poses, we discuss the fingerprints of three model versions in detail 
before moving on to the more overarching patterns and typologies 
that the fingerprints reveal. Detailed model-by-model observations, 
as well as model acronym meanings, are provided in Supplementary 
Information C. In Fig. 2a, we see the fingerprint of the IMAGE model20, 
a process-based IAM. The model shows medium levels of carbon emis-
sions abatement (R1) and carbon intensity reduction (M1). Still it has 
a relatively low mitigation timescale (R2), high maximum mitigation 
speed (R3) and sensitivities (R4–5) and relies relatively more on energy 
intensity reductions and carbon capture (M2–3). Consequentially, pri-
mary fossil use is higher than the ensemble median, notably coal (Es1). 
Relatively low values of solar and nuclear energy use (Es3, Es7) contrast 
with the high use of biomass (Es6, in most scenarios) in the primary 
energy mix, and high electrification of transport (Ed1), medium for 
industry (Ed2) and low for buildings (Ed3) is found. Transformation in 

preferences and changes in specific activities. Parametric uncertain-
ties involve differences in parameter calibrations or are consequential 
to differences in sectoral granularity and regional and temporal scale. 
Fundamental modelling choices may also vary, such as those con-
cerning mathematical formulation (for example, optimization versus 
simulation frameworks), model structure and foresight. Substantial 
differences can be recognized across the model outcomes5, potentially 
even yielding contradictory observations6. To have a more accurate 
understanding of energy and climate policy scenario outcomes, it is 
important to have insights into both (1) where models differ substan-
tially and where they agree and (2) how a model’s output relates to the 
overall ensemble, yielding insights on outliers and discrepancies. This 
is specifically important because studies commonly use individual 
models rather than large ensembles in both scientific literature7 and 
in policy reports (for example, in national policy studies). Only when 
single-model results are contextualized by the model’s position in the 
larger ensemble, the reader would be able to have a complete and cor-
rect interpretation of the output. Additionally, such quantification of 
the model’s position in the larger model ensemble allows for tracking 
model development8.

Both questions require a stylized set of results across the model 
range in which only a well-defined number of assumptions is varied. To 
this end, multi-model comparison exercises have been effective. This is 
done within confined projects3 and, for instance, in the long tradition9 
of studies by the Energy Modelling Forum10,11, of which many scenario 
runs are collectively used in the Assessment Reports by the IPCC10,11. 
Still the observed large model differences—especially in estimates of 
costs12, the diffusion of individual renewable energy technologies13 and 
demand sector development14,15—motivate more research in this area 
and emphasize the importance of interpreting single-model results in 
light of larger model ensembles.

Many multi-model comparison studies test the (un)certainty of an 
outcome by looking at the range across models in scenarios designed 
for other purposes, for example, to describe the effect of current 
mitigation measures6. While insightful for that particular question, 
quantifying and evaluating overall model behaviour requires analysis 
beyond typical scenarios and typical variables—hence the importance 
of analysis of diagnostic scenarios, expressed in diagnostic variables or 
indicators. Such practice is well established in the climate and atmos-
pheric sciences16–18. Examples of indicators are the equilibrium climate 
sensitivity and the transient climate response, which are associated 
with diagnostic scenarios in which the CO2 concentration is doubled 
or quadrupled. In the emissions mitigation literature, examples of 
diagnostic multi-model studies are Kriegler et al. (2015) and Harm-
sen et al. (2021), which propose a limited set of diagnostic indicators 
that reflect crucial model behaviour aspects8,19. Using two diagnostic 
scenarios—with a constant and exponentially increasing carbon tax, 
respectively—Kriegler et al. condense the output of models into four 
core diagnostic indicators: (1) the relative abatement index, express-
ing the overall mitigation effort; (2) the carbon intensity over energy 
intensity, expressing the mitigation strategy; (3) the transformation 
index, expressing the required transformation; and (4) the cost per 
abatement value, expressing the policy costs per unit of marginal 
abatement. Harmsen et al. continued on this path by updating the 
calculations by Kriegler et al. for a larger number of models and model 
versions, adding an indicator on primary fossil fuel energy reduc-
tion and an analysis of model inertia. The latter yields a total of six 
key diagnostic indicators for energy system models and integrated 
assessment models (IAMs).

Some model aspects are more indicative of model behaviour than 
others: for example, model sensitivity to carbon taxes already reveals 
much about drivers of the model’s output, much like equilibrium cli-
mate sensitivity is a core classifier in climate models. Still analysing 
individual model dimensions (or indicators) yields only a limited view 
due to the higher-dimensional intertwinement of mitigation, policy, 
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the energy supply and demand sides depend on the scenario, while the 
costs remain approximately average (C1–3).

Figure 2b shows the fingerprint of the REMIND model21, which is 
a Ramsey-type general equilibrium growth IAM—quite different from 
IMAGE. Indeed, the fingerprint also looks very different indicating 
substantial differences between the output of REMIND on the one 
hand, and those of IMAGE on the other hand. Striking are the higher 
levels of abatement (R1), carbon intensity reductions (M1) and fast 
reaction to carbon pricing (low R2, high R3). Consistent with these 
observations, primary fossil use (Es1–Es3) is limited, whereas vari-
able renewable energy and electrification in transport and buildings  
(D1, D2) are higher than ensemble medians. For industry, electrification 
is quite sensitive to scenario assumptions. The associated transforma-
tion index (C2) is expectedly high, while the costs (C1) are lower than 
the ensemble median.

A third and final example we will discuss here is shown in Fig. 3b—
the PRIMES model22, which is an energy system model that provides 
projections of energy demand, supply, prices and investments. This 
model does not react heavily to the various scenario assumptions, 
reflected in the low scenario sensitivity of the primary energy mix 

(R4) and demand (R5) and in the narrow scenario ranges shown in the 
fingerprint diagram. PRIMES projects near-median levels for most 
indicators, with a few exceptions: a relatively low mitigation speed 
potential (R3), high energy intensity reduction (M2), high relative 
non-CO2 reductions (M4), low solar energy use (Es4) and notably a very 
high hydrogen use (Ed5).

Model typology
A summary of the general tendencies of the models is shown in Table 1.  
We use a similar (but extended) approach to this as in previous  
literature8, where a general classification was given of each of the mod-
els. The assessments in the table are directly based on the fingerprints 
in Figs. 2 and 3 and quantify the extent to which the models deviate 
from the ensemble.

The spread in Table 1 indicates the significance of the differences 
in reported model deviations. For example, in response to carbon 
taxing in REMIND (+1.8σ) versus that in TIAM-ECN (−1.6σ), the energy 
intensities in WITCH (+2.1σ) and TIAM-ECN (−1.7σ) or the relative miti-
gation of non-CO2 emissions in IMAGE and REMIND (−1.1σ and −1.2σ) 
was compared to that in TIAM-ECN (+1.8σ). Whereas such values are 
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Fig. 1 | Framework of model fingerprints. Explanation of the framework that is 
used to compute model fingerprints. The five diagnostic indicator dimensions 
are shown in colours: responsiveness (green), mitigation strategies (yellow), 
energy supply (blue), energy demand (red) and costs and effort (purple). 
The framework uses the statistics of the ensemble to visualize the results of 
a single model, resulting in a circular diagram per model. The inner circle 
represents the median per indicator, calculated from the ensemble containing 
all model-scenario combinations—that is, including all other models as well. 
The outer circle and the centre indicate the medians ± two standard deviations, 
respectively. Example ranges (yellow shaded, not based on data) for indicators 
M1–M4 are shown: the ranges show the range that the respective model covers 

across its scenarios. These ranges (Figs. 2–3) exclude the scenario that includes 
only current implemented policies (referred to as the DIAG-NPI scenario, 
Table 3), which is used only as a reference for R1, R2 and C1. Note that differences 
in this reference may cause differences in the indicators; this is discussed in 
Supplementary Information A.3, which is why we use the comparison with 
historical values as much as possible (whenever a reference is needed). The shape 
or indicator arc widths do not have any quantitative meaning themselves. For M4, 
direct air capture (DAC) and bioenergy with carbon capture and storage (BECCS) 
are included, and for the energy intensity in M2, we use gross domestic product 
(GDP) at purchasing power parity (PPP).
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expected for individual model runs (as the values are expressed in 
standard deviations), this table reports the medians per model, reveal-
ing that the model outputs are indeed substantially different in certain 
respects. In other words, inter-model differences are high compared to 
intra-model (that is, scenario) differences. Note that Table 1 contains 
combinations of diagnostic indicators. For example, the averaging 
electrification across the end-use sectors conceals the high model 
differences in individual sector electrifications such as transport in 
REMIND (+2.2σ) and industry in WITCH (+1.7σ). For more detail, we 
refer the reader to Figs. 2 and 3 and Supplementary Information B.1.

To provide structure to the discussion, we sorted the models 
by their tax response (second column, R1): that is, carbon emis-
sions in 2050 under a carbon tax scenario compared with that in the 

current-policies scenario of the same model. REMIND is by far the most 
responsive (green); it shows almost two standard deviations higher 
relative abatement and, in addition, has a high scenario response. This 
high responsiveness coincides with high carbon intensity reduction, 
renewables and electrification. It emphasizes carbon intensity reduc-
tion with emphasis on CO2 emissions while projecting average numbers 
for energy intensity reduction and carbon capture. Euro-Calliope 
partially shows similar results, also having a (moderately) high tax 
response, carbon intensity reduction and renewables rollout but to a 
lesser extent than REMIND. From a system point of view, these models 
show a consistent fingerprint; the high tax response (green) is achieved 
by replacing fossils (yellow) by renewables (blue) and high electrifica-
tion (orange). IMAGE can also be regarded as a model with moderately 
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Fig. 2 | Model fingerprints. a–d, Model typologies or ‘fingerprints’ of the IMAGE 
(a), REMIND (b), MESSAGEix-GLOBIOM (c) and WITCH (d) models for Europe in 
2050. The axis for each indicator ranges between the ensemble median (ƞ) ± two 
standard deviations (σ). These medians and standard deviations are computed 
from the full ensemble, that is, the eight models and nine linearly increasing-

price scenarios (excluding the current-policies scenarios), and the coloured 
shaded scenario ranges are for each individual model indicated by the panel 
titles. Data close to the centre reflect below-median results. Data towards the 
outer ring reflect above-median results. More details on the indicators are  
in Fig. 1.
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high responsiveness, projects relatively high carbon intensity reduc-
tions and, like REMIND, indicates relatively low non-CO2 reductions 
compared with CO2. However, as observed in Fig. 2, it differs from 
REMIND and Euro-Calliope by relying more on carbon capture (+1.4σ) 
and fossils (+0.7σ).

This consistent fingerprint can also be observed at the other end of 
the spectrum. This is clearly expressed in TIAM-ECN output, which has 
a low tax response, low carbon intensity reduction, high fossil use and 
low electrification. MESSAGEix also shows this mirror image to some 
extent, but it is closer to the rest of the ensemble than TIAM-ECN in this 
respect. While this model initially rapidly mitigates emissions (reflected 
in a low R2—approximating REMIND), the abatement becomes relatively 
slow over time, yielding an overall medium to low relative abatement 

(R1) of −0.5σ. Note that this is partially consequential to differences in 
what years are represented in each model year—for MESSAGE, 2050 
represents the five preceding years. These abatement projections are 
accompanied by relatively low (sectoral average) electrification of 
−0.4σ and higher fossil use of +0.5σ and also a low carbon and energy 
intensity reductions (−0.8σ and −0.7σ, respectively; Supplementary 
Information B.1).

Besides MESSAGEix, the three other models with medium tax 
response—PRIMES, PROMETHEUS and WITCH—are the models with 
the highest energy intensity reductions while having low (WITCH) 
or medium (PRIMES, PROMETHEUS) carbon intensity reductions. 
This is most clearly visible in WITCH output, projecting energy inten-
sity reductions of over two standard deviations higher. The three 
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below-median results. Data towards the outer ring reflect above-median results. 
More details on the indicators are in Fig. 1.
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models have another commonality: they are all moderately sensitive to  
scenario assumptions. However, in many other ways, their projections 
notably differ. WITCH relies more on carbon capture in contrast to 
PROMETHEUS, which, in turn, has higher nuclear and bioenergy in their 
energy supply mix than any other model in this experiment. The latter 
is related to the high level of biofuel use in PROMETHEUS.

A commonality between WITCH, IMAGE and MESSAGEix can also 
be found; they all have rather high fossil use and carbon capture (the 
exception to this pattern seems to be TIAM-ECN, which does not pro-
ject as much carbon capture). Interestingly, while high carbon capture 
intuitively would generate high abatement and carbon intensity reduc-
tions, this is not visible here, with, for example, MESSAGEix having +1.1σ 
carbon capture but −0.8σ carbon intensity reduction (Supplementary 
Information B.1).

In previous papers, scholars have tried to link model behaviour to 
the underlying model type in terms of solution approach (for example, 
partial or general equilibrium, recursive dynamic or inter-temporal). 
For example, Daioglou et al. (2020)23 tried to link bioenergy use to 
model type, and Harmsen et al. (2021)8 compared the output of six 
diagnostic indicators to the model types. However, in both studies, 
‘no direct relationship between model type and model behaviour’ 
was found8. Even though this study contains more unique scenarios 
than in previous studies, we again find no clear link between model 
behaviour and model type (although the set considered here does 
include a smaller set of models). In Table 1, we see that inter-model 
differences are not only higher than inter-scenario differences in 
many of the indicators but also higher than inter-model type differ-
ences. Technology-rich energy system models can be among the most 
tax-sensitive models for abatement (Euro-Calliope) or among the 
lesser tax-sensitive ones (MESSAGEix)—that is, being technology rich 
does not imply a certain level of carbon tax sensitivity. Similar patterns 
can be observed for general versus partial equilibrium models and 
inter-temporal vs myopic models. It is important to emphasize that 
while having more scenarios than in previous studies allows for a more 
representative fingerprint of each model, a clear limitation for trying to 
attribute model behaviour to its type is the limited number of models 

(eight). Adding more models could help in observing such relations, 
but models are rarely fully independent from each other—which is a 
limitation in these model comparison exercises in general.

Discussion and conclusion
In this paper, we propose a unique framework to characterize energy 
model typology by quantifying their ‘fingerprints’ in scenario ensem-
bles. We identified five key model dimensions along which models dif-
fer: model responsiveness, mitigation strategies, energy supply, energy 
demand and costs and effort split further into a total of 24 diagnostic 
indicators. A number of these indicators are re-used from existing  
literature8,19 (Supplementary Information A.6), but we add more dimen-
sions such as the energy supply mix, carbon capture, non-CO2 and 
demand responses, which allows for a more complete interpretation 
of model behaviour. The indicators are calculated and visualized rela-
tive to the ensemble statistics of a set of tailored diagnostic scenarios, 
yielding a comprehensive insight into each model’s fingerprint in  
relation to the other models.

The framework contextualizes results from individual models (or 
rather model versions, which may also evolve their behaviour24,25) by 
identifying typical model behaviour, which yields better interpretation 
and understanding of them. The latter, of course, is of vital importance 
to both researchers and policymakers8,19. Additionally, the substantial 
model differences, being commonly larger than inter-scenario differ-
ences, motivate caution on using individual model results without 
ensemble context in general. Specifically, we find highly tax-responsive 
models to also have the highest renewables, electrification and carbon 
intensity reduction. IMAGE is also relatively highly responsive but 
distinguishes itself with high fossil and carbon capture use. TIAM-ECN, 
having the lowest tax response, indeed also shows a low carbon inten-
sity reduction. MESSAGEix shows a similar pattern (but more closely 
to the rest of the ensemble), and both of these models additionally 
show a low energy intensity reduction. Most models with medium 
tax-responsive models (WITCH, PROMETHEUS and PRIMES) show 
higher energy intensity reductions and moderate scenario responsive-
ness but vary in many other ways.

Table 1 | Overview of model typologies

Responsiveness Mitigation strategies Energy supply Electrification Costs

Carbon tax 
sensitivity

Scenario 
sensitivity

Reduction CI/EI Carbon 
capture

Non-CO2 
reduction 
compared to CO2

Fossils/
renewables/
other

Low/medium/
high

Cheap/
medium/
expensive

R1 R4–5 M1–2 M3 M4 Es1–7 Ed1–3 C1 inverted

REMIND
IT-GE

High
(+1.8σ)

High
(+1.3σ)

CI reduction
(+1.2σ)

Medium
(0.0σ)

Low
(−1.2σ)

Renewables
(+0.7σ)

High
(+0.9σ)

Cheap
(−0.6σ)

Euro-Calliope
IT

Medium
(+0.5σ)

High
(+1.2σ)

CI reduction
(+0.5σ)

– – Renewables
(+1.3σ)

–
(−)

–

IMAGE
RD-PE

Medium
(+0.5σ)

Medium
(+0.5σ)

CI reduction
(+0.5σ)

High
(+1.1σ)

Low
(−1.1σ)

Fossils
(+0.7σ)

Medium
(−0.5σ)

Medium
(0.0σ)

PRIMES
IT-PE

Medium
(+0.1σ)

Medium
(−0.3σ)

EI reduction
(+0.4σ)

Medium
(−0.4σ)

High
(+1.0σ)

Renewables
(+0.1σ)

Medium
(0.0σ)

–

PROMETHEUS
RD-PE

Medium
(−0.3σ)

Medium
(0.0σ)

EI reduction
(+0.7σ)

Low
(−0.9σ)

– Other
(+1.9σ)

Medium
(0.0σ)

–

WITCH
IT-GE

Medium
(−0.4σ)

Medium
(+0.4σ)

EI reduction
(+2.1σ)

High
(+1.1σ)

Medium
(0.0σ)

Fossils
(+1.0σ)

High
(+0.7σ)

Expensive
(+0.6σ)

MESSAGEix-GLOBIOM
IT-GE

Medium
(−0.5σ)

Medium
(+0.2σ)

EI reduction
(−0.7σ)

High
(+1.1σ)

Medium
(+0.1σ)

Fossils
(+0.5σ)

Medium
(−0.4σ)

Medium
(0.0σ)

TIAM-ECN
IT-PE

Low
(−1.6σ)

Medium
(−0.4σ)

EI reduction
(−1.7σ)

Medium
(−0.3σ)

High
(+1.8σ)

Fossil
(+1.4σ)

Low
(−0.9σ)

Expensive
(+2.8σ)

The columns refer to individual or combined diagnostic indicators and the cells below it show how many standard deviations the model median differs from the ensemble median (Methods). 
Missing values are denoted with dashes. ‘Medium’ implies a deviation within ±0.5σ. ‘High’ and ‘Low’ imply larger positive and negative deviations, respectively. Deviations of more than ±1σ are 
emphasized in bold. Abbreviations in the first column: IT (inter-temporal), GE (general equilibrium), PE (partial equilibrium) and RD (recursive dynamics). For carbon and energy intensity (CI 
and EI) and in the column on energy supply, only the highest deviation is indicated. An extended version of this table with values for each diagnostic indicator can be found in Supplementary 
Information B.1.
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The framework also has limitations. First of all, the scenario 
projections are not statistical predictions—hence, the model-scenario 
ensemble cannot be used as such, and the ensemble median should 
not be interpreted as ‘most appropriate’. Analogously, model behav-
iour that is distinct from the rest of the ensemble (outliers) should 
not be treated as ‘least probable’ and neither should the sorting of 
models by carbon tax response (in Table 1) reflect a form of ‘ranking’. 
Whereas typical other multi-model comparison studies focus much 
more on robust messages across models, our aim is to identify and 
highlight their differences. The model differences presented here do 
not even necessarily illustrate a lack of consensus on future outcomes. 
Potentially, they also reveal that deep mitigation can be achieved in 
multiple ways (that is, a form of ‘policy freedom’), albeit each con-
ditioned in various respects, motivating the high dimensionality of 
this analysis. Hence, for the purpose of exploring the future, model 
differences can therefore be useful. This study aims only to map these 
differences; it does not identify its sources—which also requires the 
analysis of model inputs and parameters26,27, for example associated 
with efficiency differences in final energy (R5, Ed1–3 and C3). A sec-
ond important remark is that the fingerprint framework and Table 1 
contain quantities that are relative to the ensemble. Therefore, the 
fingerprints dilute information on absolute differences—motivating 
the importance of Supplementary Table 4—which should always be 
taken into account when using this framework. The relative nature 
of the framework also means that there is no single ‘absolute’ finger-
print of any model; it is always subject to the ensemble the model is 
being compared to. Structural bias in the community (that is, across 
all included models) will therefore not be easily detected. Adding 
models to the presented diagnostic exercise or choosing a different 
regional scope will modify the model fingerprints (for example, Sup-
plementary Information B.4 for global results). Still by choosing the 
diagnostic scenarios with a wide range of assumptions and a large 
variety of models, we do approximate a comprehensive overview of 
the behaviour of the eight models included (for the region of Europe). 
Finally, we also note that the scope of this research was Europe and 
deep mitigation scenarios. The model fingerprints will look different 
when applied to other regions or global results and to scenarios with 
little climate policy.

Even though we show only one application of the framework, it 
is intended as a general framework—both the methodology, code and 
data are flexible in nature. The model fingerprints for global output 
(rather than European) in Supplementary Information B.4 are an illus-
tration of this, but it is also well suitable as a diagnostic tool for model 
development by determining the fingerprints for different versions 
of a single model. To quantify model fingerprints at a more detailed 
sectoral level, the dimensions, indicators and even the scenarios can 
be adjusted accordingly. On diagnostic indicators, earlier literature8,19 
stresses the importance of applicability to diverse models, beyond only 
the relevance, quantifiability and identification of heterogeneity. For 
the purpose of the latter, this framework with the current selection of 
diagnostic indicators is well suited whereas for the former, the frame-
work may require translation—for example, for models that cover only 
the electricity sector. This way the framework can form the basis of 
future model intercomparison projects.

Methods
Diagnostic experiment
We conducted a diagnostic experiment in which we ran ten different 
scenarios using eight different models. The models used are shown 
in Table 2. The models intentionally vary in many respects: coverage 
(global or Europe), scope (IAMs and energy system models), type 
(simulations and optimizations) and more. Whereas the focus of this 
work is Europe, most models in fact have a global coverage. For global 
models, the basis of all scenarios is globally the trajectory associated 
with current policies implemented. Carbon prices are also issued 

globally, and whenever applicable, specific scenario assumptions are 
listed (in Table 3) for both the globe and Europe.

The scenarios in this diagnostic experiment are described in  
Table 3. A current-policies (DIAG-NPI) baseline scenario is included 
for reference. All other scenarios are based on DIAG-NPI but, in addi-
tion, have a predefined fixed linearly increasing carbon price profile 
and integrate additional constraints or assumptions (third column in 
Table 3). One scenario has the linearly increasing carbon price next to 
current national policies implemented (DIAG-C400-lin) without any 
additional assumptions. The carbon price profile cp(t) is up to 2025 
similar to each model’s current policies (cpNPI(t), from DIAG-NPI), after 
which it becomes a linearly increasing tax as follows, expressed in US 
dollars (2010) and time t in years:

cp(t) = {
cpNPI(t) if t < 2025

130 + 18 × (t − 2025) if t ≥ 2025
(1)

which results in a carbon price of US$580 t−1 CO2 in 2050 (US$400 t−1 CO2 
in 2040). The eight variations of DIAG-C400-lin are explained in 
Table 3 and include one with a limit on the bioenergy potential 
(DIAG-C400-lin-LimBio) and one where electricity prices artificially 
kept low (DIAG-C400-lin-HighElectrification).

Definitions of indicators
In this diagnostic exercise, we focus on Europe and 2050, but the frame-
work can easily be adjusted for other regions or time frames. We con-
sider only CO2 emissions and no other Kyoto gases and only for the 
energy sector (the only exception being indicator M4) because not all 
models from the ensemble include emissions from land use or other 
non-energy sectors in their scenario results. Another reason involves 
the focus of this study, which is on characterizing energy models rather 
than climate policy models in the broader sense. As shown to the bot-
tom right of Fig. 1, some indicators are computed relative either to 
the current-policies scenario or to historical values of 2017–2021. The 
current-policies scenarios already differ substantially between models 
(Supplementary Information A.3), which can partially be explained 
by differences in regional aggregation (Supplementary Information 
A.1: for example, REMIND shows CO2 emissions reductions by 74% 
(for EU28) while MESSAGEix shows increases by 33% (also including 
Turkey). Such differences in the current-policies scenario will affect 
the indicators, but for some (that is, R1 and R2), it is required to com-
pare to a scenario (from the same model) with a lower carbon price.  
A more elaborate discussion on using the current-policies scenario or 
historical data (2017–2021) as a reference is given in Supplementary 
Information A.3. We emphasize that we build upon earlier work8,19 in 
several of these indicators and that while some indicators discussed 
in this section are new definitions, the contribution of this paper lies 
in bringing many model dimensions together in one comprehensive 
model typology overview.

We refer to the first dimension as Responsiveness (green), which 
expresses the response of model output to various conditions into five 
indicators. The first indicator in this category is the sensitivity of the 
model’s calculated emissions abatement to carbon pricing (R1), which 
we quantify using the relative abatement index, that is, the relative 
reduction in emissions of carbon pricing scenarios with respect to the 
current-policies base scenario and emissions from energy and indus-
trial processes for scenario s and year t denoted by E(s, t):

R1(s) =
E(NPI, 2050) − E(s, 2050)

E(NPI, 2050) (2)

We calculate R1 by comparing the linearly increasing carbon price 
scenarios (Table 3) to the current-policies scenario, but we note that 
the term ‘relative abatement index’ is used previously for other pricing 
profiles as well: for example, Harmsen et al. uses the same terminology 
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for an exponentially increasing carbon price8, while we use a linearly 
increasing one (equation (1)). The second indicator (R2) is the timescale 
of carbon price response, which is defined as the number of years until 
the scenario has 66% lower CO2 emissions than the current-policies 
scenario has in the same year. A related (Supplementary Information 
A.2) third indicator is the maximum mitigation speed (R3), which is the 
maximum emissions reduction over any five-year increment, yielding 
insights in how fast the model can mitigate in short periods. The fourth 
(R4) and fifth (R5) indicators focus on scenario sensitivity for each 
model, resulting in a single value (per model) rather than a scenario 
range, indicating how the primary energy mix and the final energy 
demand across sectors vary among its scenarios. We write the fraction 
of an energy carrier c in the primary energy mix in scenario s as fc,s, its 
average across all scenarios as ̄fc and the total number of unique car-
riers considered as nc. Then, R4 is computed as follows:

R4 =
1
nc

∑
c
var (

fc,s

fc
) (3)

In other words, it represents the average of the inter-scenario vari-
ances per primary energy carrier fraction. R5 is computed similarly but 
uses final energy use across the industry, transportation and buildings 
sectors (instead of primary energy carrier fractions). If R4 and R5 are 
high, there is much inter-scenario variation in the primary energy mix 
or final energy demand in the model’s output, while if these values are 
low, the scenarios are more or less similar and the model is relatively 
static with respect to the scenario assumptions.

The second dimension to express model typology concerns the 
mitigation strategies (yellow in Fig. 1). Whereas to some extent all mod-
els rely on all mitigation strategies we categorize here, it is useful to 
quantify which are more prominent in model output relative to others 
in the ensemble. The first indicator in this dimension is the reduction in 
carbon intensity (M1, emissions divided by the final energy) compared 
to the baseline scenario. Similarly, the second mitigation strategy (M2) 
involves reduction in energy intensity, that is, final energy divided by 
the gross domestic product (purchasing power parity). These reduc-
tions are compared to the average historical values between 2017 

Table 2 | Models used in the analysis

Abbreviation Model Coverage Type Institution

IMA IMAGE 3.3 Global IAM, simulation (RD-PE) Netherlands Environmental Assessment Agency

TIA TIAM-ECN 1.2 Global IAM, optimization (IT-PE) Netherlands Organization for Applied Scientific 
Research

MES MESSAGEix-GLOBIOM 1.1 Global IAM, optimization (IT-GE) International Institute for Applied Systems Analysis

REM REMIND 2.1 Global IAM, optimization (IT-GE) Potsdam Institute for Climate Impact Research

WIT WITCH 5.0 Global IAM, optimization (IT-GE) Euro-Mediterranean Center for Climate Change

PRO PROMETHEUS 1.2 Global IAM, simulation (RD-PE) E3-Modelling

PRI PRIMES 2022 Europe IAM, optimization (IT-PE) E3-Modelling

EUR Sector-coupled Euro-Calliope Europe ES, optimization (IT) TU Delft

Model types (fourth column) are abbreviated: IAM (integrated assessment models), IT (inter-temporal), GE (general equilibrium), PE (partial equilibrium) and RD (recursive dynamics). More 
information can be found at https://www.iamcdocumentation.eu/index.php/IAMC_wiki. When referring to ‘Europe’, we mean the European Union together with the United Kingdom (that is, 
EU28), or the closest resemblance of this per model based on their regional aggregations.

Table 3 | Description of the diagnostic scenarios

Scenario name Carbon pricing Additional assumptions

DIAG-NPI National policies implemented –

DIAG-C400-lin Linear, equation (1)
(580 US$ t−1 CO2 in 2050)

–

DIAG-C400-lin-LimBio Identical to DIAG-C400-lin Global primary modern bioenergy supply limited to 100 EJ, which is on the lower 
end of the range given in the Sixth Assessment Report by IPCC32.
Maximum European primary biomass use is limited to 7 EJ, which is close to current 
use33. Biomass imports of Europe set to 0.

DIAG-C400-lin-LimCCS Identical to DIAG-C400-lin CCS (including BECCS and DACCS) limited to 2 Gt CO2 per year globally.
Max CCS use in Europe limited to 250 Mt CO2 per year.

DIAG-C400-lin-LimNuclear Identical to DIAG-C400-lin Nuclear power limited to today’s levels and no new constructions are allowed 
except capacity already under construction.

DIAG-C400-lin-HighVRE Identical to DIAG-C400-lin Set direct LCOE for offshore wind at €30 MWh−1, onshore wind at €20 MWh−1 and 
solar PV at €10 MWh−1 by 2050. Linear interpolation from current prices.

DIAG-C400-lin-HighElectrification Identical to DIAG-C400-lin Provide emissions-free electricity for demand sectors at €30 MWh−1 (excluding 
transmission and distribution).

DIAG-C400-lin-H2 Identical to DIAG-C400-lin Provide emissions-free hydrogen for demand sectors at €45 MWh−1 (excluding 
transmission and distribution).

DIAG-C400-lin-ResidualFossil Identical to DIAG-C400-lin Set fossil fuel primary energy prices at €70 GJ−1 (before carbon pricing).

DIAG-C400-lin-HighEff Identical to DIAG-C400-lin By means of a variety of lifestyle change or high efficiency options (models are free 
to choose), reach final energy values of 26 EJ in Europe in 2050 including bunkers 
and non-energy.

To align with earlier diagnostic scenario runs8, 2010 US dollar is used as currency for the carbon pricing. All other prices and monetary variables are in 2020 Euro. More details can be found 
in the model-scenario protocol, publicly available32. Because of the variety in model characteristics, not all models were able to run all prescribed scenarios. Still over 90% of all theoretically 
possible model-scenario combinations are included in the database (Supplementary Information A.5).
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and 2021, by taking an ensemble average across this period. The third 
mitigation indicator (M3) is expressed in the amount of carbon captured 
(including direct air capture) in 2050, focusing on the energy sector. 
The fourth (M4) is the quotient between non-CO2 emissions reduction 
and CO2 emissions reduction (using 100-year global warming potential 
values analogous to IPCC Sixth Assessment Report). Because only a 
few models reported non-CO2 emissions specifically from the energy 
sector, we are calculating this quotient based on non-CO2 and CO2 
emissions from all sources.

The third dimension involves energy supply, expressed in the 
primary energy mix (blue). The associated indicators are primary 
energy consumption per carrier calculated as fractions of the total 
primary energy in 2050: coal (Es1), oil (Es2), gas (Es3), solar (Es4), wind 
(Es5), biomass (Es6) and nuclear (Es7).

The fourth dimension focuses on the energy demand (red). We 
have chosen to split up the three major end-use sectors transport, 
industry and buildings when looking at their respective electrifi-
cation (Ed1, Ed2 and Ed3). The fourth indicator quantifies the CO2 
emissions in the electricity sector (Ed4), which is partially redundant 
when already knowing the primary energy mix (shown in the blue 
indicators), but we include it to provide a quick overview of specifi-
cally the electricity sector. To address the high inter-model variation 
on hydrogen28, Ed5 quantifies the fraction of hydrogen in the final 
energy mix across scenarios.

The fifth and final dimension of model typology concerns mitiga-
tion costs and effort (purple). Policy costs in energy system models can 
be calculated in different ways, such as consumption loss and the area 
under the marginal abatement cost curve—we use whatever is available 
for each model. The first indicator in this dimension concerns the costs 
per marginal abatement value (C1), which captures the ratio between 
cumulative additional policy costs (being the scenario costs minus 
that in the current policies) and the value of emissions reduction; if this 
number is high, the abatement was expensive. Note that this metric is 
related to (a cumulative version of) the cost per abatement value metric 
in earlier work8,19 and is computed as follows:

C1(s) =
Cumulative additional policy costs between2020and2050

CP ⋅ (E(s, 2020) − E(s, 2050))
(4)

where CP  is the average carbon price over the period 2020–2050, and 
E(s,t) is the CO2 emissions in scenario s and time t. The second indicator 
is the transformation index (C2), first proposed by Kriegler et al. (2015)19, 
which is the sum of the absolute changes in the fractions of the primary 
energy carriers in 2050 (compared to the values in the period 2017–
2021). Similarly, C3 quantifies the changes in final energy demand across 
sectors.

Model typology table
Table 1 contains a quantification of typical model behaviour in terms of 
how it deviates from the ensemble. This ‘deviation metric’ is calculated 
as follows, for each indicator i and model m:

Deviationmetric (i,m) = ηm − ⟨η⟩
⟨σ⟩ (5)

where η denotes the median and brackets (<>) indicate the full 
ensemble. In other words, we compute the difference of the model’s 
median with the ensemble’s median and express this in the number 
of standard deviations. In a few columns of Table 1, we combine 
indicators for readability (Supplementary Table 5 provides the 
more detailed version of this table). For scenario responsiveness, 
we average the metric above for R4 and R5. Similarly, for electrifica-
tion, we average it for Ed1, Ed2 and Ed3. In the column on energy and 
carbon intensity and the one on energy supply, simply the highest 
deviation is reported.

Data availability
Processed data and a dataset containing all indicator values are publicly 
available on Zenodo29 and are maintained on Github (https://github.
com/MarkMDekker/IAMfingerprints). The scenario output data are 
available directly from the IIASA ECEMF database (https://data.ece.
iiasa.ac.at/ecemf/) and on Zenodo30.

Code availability
All analysis and plotting code is publicly available on Zenodo29 and is 
maintained on Github (https://github.com/MarkMDekker/IAMfinger-
prints). The model comparison protocol can be accessed on Zenodo31.

References
1. European Commission European Green Deal (European Union, 2019).
2. Wang, M. et al. Breaking down barriers on PV trade will facilitate 

global carbon mitigation. Nat. Commun. 12, 6820 (2021).
3. Byers, E. et al. AR6 Scenarios Database (Zenodo, 2022);  

https://doi.org/10.5281/ZENODO.5886911
4. van Beek, L., Hajer, M., Pelzer, P., van Vuuren, D. & Cassen, C. 

Anticipating futures through models: the rise of integrated 
assessment modelling in the climate science-policy interface 
since 1970. Glob. Environ. Change 65, 102191 (2020).

5. Dekker, M. et al. On the consensus in climate policy scenarios. 
Preprint at Research Square https://doi.org/10.21203/rs.3. 
rs-2073170/v1 (2022).

6. Sognnaes, I. et al. A multi-model analysis of long-term emissions 
and warming implications of current mitigation efforts. Nat. Clim. 
Change 11, 1055–1062 (2021).

7. Luderer, G. et al. Impact of declining renewable energy costs on 
electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).

8. Harmsen, M. et al. Integrated assessment model diagnostics:  
key indicators and model evolution. Environ. Res. Lett. 16,  
054046 (2021).

9. Smith, S. J. et al. Long history of IAM comparisons. Nat. Clim. 
Change 5, 391 (2015).

10. Blanford, G. J., Kriegler, E. & Tavoni, M. Harmonization vs. 
fragmentation: overview of climate policy scenarios in EMF27. 
Clim. Change 123, 383–396 (2014).

11. Clarke, L. et al. International climate policy architectures: 
overview of the EMF 22 International Scenarios. Energy Econ. 31, 
S64–S81 (2009).

12. van Vuuren, D. P. et al. The costs of achieving climate targets and 
the sources of uncertainty. Nat. Clim. Change 10, 329–334 (2020).

13. Luderer, G. et al. Assessment of wind and solar power in global 
low-carbon energy scenarios: an introduction. Energy Econ. 64, 
542–551 (2017).

14. Tavoni, M. et al. Post-2020 climate agreements in the major 
economies assessed in the light of global models. Nat. Clim. 
Change 5, 119–126 (2015).

15. Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C 
pathways. Nat. Clim. Change 8, 626–633 (2018).

16. Flato, G. et al. in Climate Change 2013: The Physical Science Basis 
(eds Stocker, T. F. et al.) 741–866 (Cambridge Univ. Press, 2013).

17. Eyring, V. et al. Overview of the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) experimental design and organization. 
Geosci. Model Dev. 9, 1937–1958 (2016).

18. Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, 
feedbacks and climate sensitivity in CMIP5 coupled atmosphere- 
ocean climate models. Geophys. Res. Lett. 39, L09712 (2012).

19. Kriegler, E. et al. Diagnostic indicators for integrated assessment 
models of climate policy. Technol. Forecast. Soc. Change 90, 
45–61 (2015).

20. PBL Netherlands Environmental Assessment Agency IMAGE 
Documentation (2022); https://models.pbl.nl/image/index.php/
Welcome_to_IMAGE_3.2_Documentation

http://www.nature.com/natureenergy
https://github.com/MarkMDekker/IAMfingerprints
https://github.com/MarkMDekker/IAMfingerprints
https://data.ece.iiasa.ac.at/ecemf/
https://data.ece.iiasa.ac.at/ecemf/
https://github.com/MarkMDekker/IAMfingerprints
https://github.com/MarkMDekker/IAMfingerprints
https://doi.org/10.5281/ZENODO.5886911
https://doi.org/10.5281/ZENODO.5886911
https://doi.org/10.21203/rs.3.rs-2073170/v1
https://doi.org/10.21203/rs.3.rs-2073170/v1
https://models.pbl.nl/image/index.php/Welcome_to_IMAGE_3.2_Documentation
https://models.pbl.nl/image/index.php/Welcome_to_IMAGE_3.2_Documentation


Nature Energy

Article https://doi.org/10.1038/s41560-023-01399-1

21. Baumstark, L. et al. REMIND2.1: transformation and innovation 
dynamics of the energy-economic system within climate and 
sustainability limits. Geosci. Model Dev. 14, 6571–6603 (2021).

22. E3Modelling PRIMES Documentation (2018); https://e3modelling.
com/modelling-tools/primes

23. Daioglou, V. et al. Bioenergy technologies in long-run climate 
change mitigation: results from the EMF-33 study. Clim. Change 
163, 1603–1620 (2020).

24. Kann, A. & Weyant, J. P. Approaches for performing uncertainty 
analysis in large-scale energy/economic policy models. Environ. 
Model. Assess. 5, 29–46 (2000).

25. Lempert, R. J. A new decision sciences for complex systems.  
Proc. Natl Acad. Sci. USA 99, 7309–7313 (2002).

26. Usher, W., Barnes, T., Moksnes, N. & Niet, T. Global sensitivity 
analysis to enhance the transparency and rigour of energy system 
optimisation modelling. Preprint at https://open-research-europe.
ec.europa.eu/articles/3-30 (2023).

27. Krey, V. et al. Looking under the hood: a comparison of 
techno-economic assumptions across national and global 
integrated assessment models. Energy 172, 1254–1267 (2019).

28. Henke, H. et al. The mutual benefits of comparing energy  
system models and integrated assessment models. Preprint at 
https://doi.org/10.12688/openreseurope.15590.1 (2023).

29. Dekker, M. M. Code for: identifying energy model fingerprints 
in mitigation scenarios. Zenodo https://doi.org/10.5281/
zenodo.8220166 (2023).

30. Pietzcker, R. et al. ECEMF diagnostic scenarios. Zenodo  
https://doi.org/10.5281/zenodo.7634844 (2023).

31. ECEMF. Model comparison protocol (2.2). Zenodo  
https://doi.org/10.5281/zenodo.6811317 (2022).

32. IPCC Climate Change 2022: Mitigation of Climate Change (eds 
Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

33. Mandley, S. J., Daioglou, V., Junginger, H. M., van Vuuren, D. P. & 
Wicke, B. EU bioenergy development to 2050. Renew. Sustain. 
Energy Rev. 127, 109858 (2020).

Acknowledgements
This work was supported by the European Climate and Energy 
Modelling Forum (ECEMF, H2020 grant agreement number 
101022622). We acknowledge and thank H. Henke, E. Fejzic,  
M. Lewarski and I. Tatarewicz for their input throughout the project 
and useful comments on the manuscript. This work was also 
supported by the Exploring National and Global Actions to reduce 
Greenhouse gas Emissions (ENGAGE, H2020 grant agreement 
number 821471).

Author contributions
M.M.D., V.D., R.P., R.R., H.-S.d.B., F.D.L., L.D., J.E., A.F., T.F., P.F., O.F., 
E.G., M.H., D.H., M.K., V.K., F.L., G.L., S.P., I.T., B.Z., B.v.d.Z., W.U. 
and D.v.V. conceived the study and diagnostic experiment and 
contributed to the scenario runs and to the writing of the manuscript. 
M.M.D., V.D., D.v.V., R.P. and R.R. analysed the model output. M.M.D. 
devised the framework, performed the analysis, generated the 
figures and wrote the first draft.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41560-023-01399-1.

Correspondence and requests for materials should be addressed  
to Mark M. Dekker.

Peer review information Nature Energy thanks Alaa Al Khourdajie, 
Yang Ou and the other, anonymous, reviewer(s) for their contribution 
to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natureenergy
https://e3modelling.com/modelling-tools/primes
https://e3modelling.com/modelling-tools/primes
https://open-research-europe.ec.europa.eu/articles/3-30
https://open-research-europe.ec.europa.eu/articles/3-30
https://doi.org/10.12688/openreseurope.15590.1
https://doi.org/10.5281/zenodo.8220166
https://doi.org/10.5281/zenodo.8220166
https://doi.org/10.5281/zenodo.7634844
https://doi.org/10.5281/zenodo.7634844
https://doi.org/10.5281/zenodo.6811317
https://doi.org/10.5281/zenodo.6811317
https://doi.org/10.1038/s41560-023-01399-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Identifying energy model fingerprints in mitigation scenarios
	Framework and fingerprints
	Model typology
	Discussion and conclusion
	Methods
	Diagnostic experiment
	Definitions of indicators
	Model typology table

	Acknowledgements
	Fig. 1 Framework of model fingerprints.
	Fig. 2 Model fingerprints.
	Fig. 3 Model fingerprints.
	Table 1 Overview of model typologies.
	Table 2 Models used in the analysis.
	Table 3 Description of the diagnostic scenarios.




