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A global model of hourly space heating and 
cooling demand at multiple spatial scales

Iain Staffell    1 , Stefan Pfenninger    2 & Nathan Johnson1

Accurate modelling of the weather’s temporal and spatial impacts on 
building energy demand is critical to decarbonizing energy systems. Here 
we introduce a customizable model for hourly heating and cooling demand 
applicable globally at all spatial scales. We validate against demand from 
~5,000 buildings and 43 regions across four continents. The model requires 
limited data inputs and shows better agreement with measured demand 
than existing models. We use it first to demonstrate that a 1 °C reduction 
in thermostat settings across all buildings could reduce Europe’s gas 
consumption by 240 TWh yr−1, approximately one-sixth of historical imports 
from Russia. Second, we show that service demand for cooling is increasing 
by up to 5% per year in some regions due to climate change, and 5 billion 
people experience >100 additional cooling degree days per year when 
compared with a generation ago. The model and underlying data are freely 
accessible to promote further research.

Buildings account for 30% of global final energy demand and CO2 
emissions, with heating responsible for around half1,2. Although 
space cooling is less widely adopted than space heating, the warm-
ing climate, population growth centred on the tropics, and rising 
affluence mean that demand for space cooling is growing rapidly3. 
Air conditioners and electric fans account for 10% of global electric-
ity demand4. Unless actions are taken to address the efficiency of 
cooling equipment, energy demand for space cooling could more 
than triple by 20503–5. Accurate modelling of the spatial and tempo-
ral impacts of weather on energy supply and demand is critical to 
decarbonizing energy systems around the world. Heating and cooling 
demand depend on population density, weather, the building stock 
and occupant behaviours, which vary over space and time. Various 
tools are available for modelling spatial and temporal impacts of 
weather on the variability of renewable energy supply6,7, yet there are 
few tools available to study heating and cooling demand with the same 
global scope and consistency. The most relevant existing tools8–10 
have restricted geographical scope (only Europe or the United States), 
and some only consider heating, neglecting the growing demand for 
space cooling11.

Short-term measures to reduce energy consumption have seen 
heightened political interest since Russia’s 2022 invasion of Ukraine, 
which spurred many nations to cut their dependence on Russian energy 

imports to improve energy security12–15. One proposal for reducing 
energy consumption is to lower thermostat set-point temperatures 
in buildings, yet little is known about how savings vary over space 
and time13. Reducing thermostat set points also has clear benefits for 
consumers (lower energy bills) and the climate (faster emission sav-
ings when compared with retrofit)4,13,16. At the same time, more than 5 
million deaths per year (nearly 10% of global mortality) are associated 
with excess cold (4.6 million) and heat (0.5 million)17. A successful 
global energy transition will depend in part on understanding where, 
when and how much energy is required to provide universal thermal 
comfort18.

This paper develops a generalized framework for modelling hourly 
space heating, cooling and total energy demand at national, regional 
and individual-building scales using openly available meteorological 
reanalysis data. It validates simulated demand profiles against metered 
electricity and gas demand data from 43 regions and ~5,000 individual 
buildings worldwide. It then explores two applications of this model: 
the impact of reducing thermostat set points on gas demand in indi-
vidual buildings and at national scales, and the influence of changing 
regional climates on demand for cooling over the past 40 years. Finally, 
it launches an interactive front end for accessing these data, which 
allows users to perform custom simulations of heating, cooling and 
total demand anywhere in the world.
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Here, we present the Demand.ninja, a grey-box model of final 
energy demand (that is, the amount of energy as gas or electricity that 
is consumed in buildings) for space heating and cooling. It derives from 
a degree-day model but incorporates additional weather variables and 
statistical parameters that account for interactions between buildings 
and the local climate to improve the model’s ability to reproduce meas-
ured demand. We calibrate the model and validate its performance 
by simulating total electricity and gas demand at national, regional 
and building levels across the world, and develop representative but 
customizable parameters that allow the model to be used in other 
contexts. The model’s workflow is divided into nine stages, illustrated 
in Fig. 1a, and described in Methods.

First, we calculate the building-adjusted internal temperature 
(BAIT) at each location (step 1 in Fig. 1a). BAIT builds on existing ther-
mal indices to represent the temperature that a person would feel 
inside a building that is neither heated nor cooled (Supplementary 
Note 5). It is derived from daily average external air temperature, 
solar irradiance, wind speed and humidity. It uses several fitted coef-
ficients to parameterize how the internal temperature of a building 
is influenced by the local climate (that is, solar gains, ventilation and 
humidity). Figure 1b shows the relationship between BAIT and raw 
temperature in Great Britain, as a function of solar irradiance and 
wind speed. BAIT is then smoothed over the previous two days to 
account for the thermal inertia of insulated buildings (step 2). These 
adjustments explain how, at the same external temperature, the inter-
nal temperature of a well insulated building with large south-facing 
windows will be greater than that of a poorly insulated, draughty 
building with small windows. When it is hot and cooling is required, 
raw, unsmoothed temperatures are blended back into BAIT (step 3) 
to account for temporary ventilation (for example, windows being 
opened at night), which flushes heat accumulated in the building from 
the previous day, reflecting the fact that raw temperature is a better  
predictor of cooling demand33.

Heating and cooling degree days (HDDs and CDDs) are then cal-
culated using BAIT and balance-point temperature thresholds derived 
from it (step 4). If generating aggregated national or regional data, 
HDDs and CDDs in each grid cell are aggregated across several cal-
culations using a range of input parameters to reflect the diversity 
across buildings and occupants, and the resulting degree days are 
then averaged across grid cells, weighted according to population 
density to account for higher demand in more populous regions (step 
5). Next, HDDs and CDDs are translated into final energy demand using 
three coefficients (step 6). The baseline power coefficient measures 
temperature-independent energy demand, and heating and cooling 
power coefficients measure the additional demand per HDD/CDD 
per building (at the building level) or per person (at the national or 
regional scale). They account for differences in the size of buildings, 
the efficiency of building envelopes and heating and cooling systems. 
Large, poorly insulated buildings with inefficient equipment will yield 
higher power coefficients.

Power coefficients, balance-point temperature thresholds, and 
coefficients for building–weather interactions can all be specified 
by a user for exploratory analysis. We also optimize these at specific 
locations by calibrating the model using measured electricity and/
or gas demand data at the national, regional and individual-building 
levels (steps 7 and 8). The optimal parameters are averaged across 
regions to give generic values for each parameter to allow the model 
to be applied globally.

Finally, as the above stages are computed at daily resolution, we 
derive globally representative diurnal profiles of heating and cooling 
demand (Extended Data Fig. 1), which are applied to give hourly time 
series of demand for regions and countries (step 9).

Figure 2 illustrates the process of modelling hourly electricity 
demand in New York State, United States. When calculated using optimal 
threshold temperatures, New York has almost twice as many HDDs (980) 

Modelling building energy demand
The most common approaches for modelling energy demand in build-
ings can be divided into four categories: physical, statistical, surro-
gate and degree-day models. Supplementary Table 1 compares each 
approach and our own model—the Demand.ninja—against four key 
criteria (see also Supplementary Notes 1–4).

Physical (white-box) models use energy balance equations and 
hundreds of input parameters to simulate a building’s energy demand. 
Such a detailed approach is invaluable for optimizing building per-
formance during design stages or when retrofitting. However, pro-
gramming physical models is time consuming and data intensive, 
and requires considerable knowledge of the tool, which makes these 
models difficult to use and to scale beyond individual buildings. A 
growing body of evidence shows that large discrepancies between 
simulated and measured energy demand can arise when these models 
are used predictively without calibration19–24. Calibrating the output 
of physical models against metered energy demand data improves 
performance, as demonstrated by NREL’s ResStock and ComStock 
models for example10. These models use novel sampling techniques to 
allow scaling beyond the individual-building level, with disaggregation 
by building type and end-use, which allows them to predict changes in 
energy use for different combinations of building upgrades. The main 
limitation is that they require extensive and detailed data for calibration 
to provide accurate results, hence calibration is limited to the United 
States. Extending this calibration to a global scope would require 
equally detailed data for other regions that are currently unavailable.

Purely statistical (black-box) models derive mathematical relation-
ships between measurements of energy demand and other variables, 
which are used to predict demand25–28. These models can provide fast 
and accurate results but are only valid within the scope of their train-
ing data, and thus are difficult to generalize or customize to fit other 
contexts. Surrogate models are statistical models trained using input 
and output data from physical models29,30. With a sufficiently large 
and generalized training set, a single surrogate model could in theory 
(though not yet in practice) be used to quickly simulate energy demand 
across an exhaustive array of building designs and climate zones29,31. 
Such a model would be both generalizable and customizable but would 
still require extensive input data and knowledge to be used correctly. 
If set up incorrectly and without calibration, surrogate models would 
suffer from the same potential inaccuracies as the physical models 
upon which they are based29,32.

Degree-day models provide a simpler approach for modelling 
energy demand, but can only disaggregate demand into total heating 
and cooling, rather than multiple individual end-uses33. Space heating 
and cooling demand are strongly correlated with outdoor tempera-
ture, which is openly available at high resolutions (for example hourly 
in 0.5° grid cells). Outdoor temperatures are translated into degree 
days, which measure by how much (in °C) and for how long (in days) 
the outdoor air temperature is higher or lower than a balance point 
temperature—the range of temperatures at which a building’s internal 
heat gains counterbalance external losses, such that it requires neither 
heating nor cooling33. Degree days are then used to derive synthetic 
heating and cooling demand profiles by calibrating the model using 
measured energy demand data. The Hotmaps Project9 estimates daily 
heating and cooling demand across 28 European countries using tem-
perature as the only meteorological input, and When2Heat8 estimates 
hourly heating profiles for 16 European countries using temperature 
and wind speeds. However, the most basic degree-day models “seem 
to represent the observed data equally well”34 as When2Heat, despite 
its additional processing steps. While degree-day models have broad 
applications and low data requirements, they have limited scope for 
customization (beyond temperature thresholds) and are not widely 
validated—only at national level in two to four countries, or against 
individual buildings within a single country (which is critical for gen-
eralizing the model globally)8,9.
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as CDDs (530) per year; however, heating demand is met only partially 
using electricity (13% of households), whereas all cooling demand is met 
using electricity35, so hot days have a far greater impact on electricity 
demand than cold days. This is seen in Fig. 2e, where the slope on the 
right is steeper than that on the left. Figure 2f–h shows that, using only 
weather data and five optimized parameters, the Demand.ninja models 
the state’s total electricity demand accurately.

Validation against historical data and other 
models
We validate the Demand.ninja at the national and regional levels 
using energy demand data covering 27 countries (43 regions), and 
at the individual-building level using smart-meter datasets covering 
4,773 buildings across six countries (Supplementary Tables 2 and 3). 
Optimal model parameters and performance for each dataset are 
summarized in Supplementary Table 4 and Supplementary Figs. 43  
and 44.

Figure 3 shows the model’s ability to represent daily natural gas 
demand in the United Kingdom, and how this improves as elements of 
the BAIT process are incorporated. Applying this process reduces the 
root mean squared error (RMSE) by three-quarters relative to a basic 
degree-day model, allowing national-scale gas demand to be modelled 
to within ±2.7 GW (2.1%). The largest improvements are a 33% reduc-
tion in RMSE by moving from national average to gridded temperature 
inputs (Fig. 3b relative to Fig. 3a), another 33% by accounting for solar 
gains (Fig. 3f relative to Fig. 3e) and 16% by accounting for diversity in 
buildings and occupants through aggregating multiple simulations 
(Fig. 3g relative to Fig. 3f). The latter two are not included in previous 
studies8–10.

Figure 4 explores the error on modelled daily energy demand 
from the Demand.ninja. Figure 4a,c shows that model error is stable 
over time in both countries/regions and individual buildings respec-
tively. At the national/regional level, the average normalized root 
mean squared error (NRMSE) was 1.9% across Europe (R2 = 0.93) and 
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Fig. 1 | Illustration of the Demand.ninja method. a, The nine stages of the 
model’s workflow. Raw data inputs (labelled i–iii) are shown in blue, derived or 
user-specified inputs (labelled iv–vi) in turquoise, calculation stages (labelled 
1–9) in yellow and outputs from the model in red. b, How solar irradiance 
and wind speed affect the relationship between raw temperature and BAIT in 
Great Britain from 2015 to 2019, relating to step (1) and input (iv) in the model’s 
workflow. Higher wind speeds reduce BAIT below air temperature, and higher 
solar irradiance increases BAIT above air temperature. A diagonal line with a 
1:1 relationship is shown for reference. c, The relationship between BAIT and 
electricity demand using an exemplary home in Austin, Texas, United States, 

relating to steps (6) and (7) and inputs (v) and (vi) in the workflow. Individual data 
points show daily-average metered demand in the home, with colours relating 
to how they are classified by the model. The black line shows the Demand.ninja 
regression (that is, modelled demand) with change points for when heating and 
cooling are required (n = 364). The lines labelled Theat and Tcool refer to balance 
point temperature thresholds (°C), line Pbase refers to baseline or temperature-
independent energy demand (kWh) and slopes Pheat and Pcool are the coefficients 
for heating and cooling demand (kWh d−1 °C−1), which show how much demand 
increases with falling/rising BAIT.
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2.1% across the United States, Australia and Japan (R2 = 0.94). Across 
all regions, estimated demand for nine days out of ten is within ±2.5% 
of the true value. Model error is similarly stable, but much larger when 
simulating demand from individual buildings. NRMSE rises to 7.6% 

(R2 = 0.82), with 90% of observations within ±8.1%. Buildings are more 
difficult to model due to highly individual usage and behavioural pat-
terns (for example people going on holiday or controlling their heat-
ing and cooling system in a non-uniform way across years). Modelling 
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Fig. 2 | The process of converting from temperature to BAIT, to degree days, 
to energy demand. Measured electricity demand covering all end uses in New 
York State (NYISO) from ref. 77 is used as a case study. Supplementary Figs. 
1–42 give plots for all other regions. a, The daily temperature averaged across 
the state (weighted by population density) and the corresponding BAIT. BAIT 
follows temperature but has lower daily variability due to temporal smoothing, 
and is generally higher than temperature during spring and lower in autumn 
months due to differences in solar irradiance relative to temperature. b, The 
corresponding HDDs and CDDs using the optimal temperature thresholds 
derived from metered electricity demand. c,d, The relationship between these 
degree days and daily metered electricity demand, with points showing demand 
from individual weekdays and lines showing the derived linear regressions 
(n = 1,392) used to model energy demand. Panel headings give the threshold 

temperatures and power coefficients for heating and cooling. e, The relationship 
between metered daily electricity demand and BAIT, with the tightness of the fit 
indicating the model’s capability to predict demand. f, Comparison of historical 
daily electricity demand with the model estimate covering the entire span of 
metered data. Demand is measured in terms of average power demand through 
the day in gigawatts. Gaps are shown where metered data are either missing or 
unrepresentative due to national holidays (for example, Christmas). c,d,f focus 
only on working days to remove noise from demand being lower on weekends 
and holidays for socioeconomic reasons. g,h, Comparison of historical and 
modelled demand at hourly resolution over two fortnights covering winter (g) 
and summer (h) months. Inset letters denote days of the week. Legends in f and h 
give statistical measures of the fit quality covering the entire multi-year period.
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aggregate regions benefits from the diversity effect, where random 
uncorrelated errors in individual buildings are (partially) cancelled out 
when modelling a large population, as seen for example with modelling 
the output of wind farms36.

Figure 4b,d shows that model error is also stable across the spec-
trum of external temperatures, implying that Demand.ninja has compa-
rable performance across heating, cooling, and temperate conditions 
when day–night temperature swings give two-way temperature flow 
between the building and its environment. Aggregated across all build-
ing datasets, the model’s relative error is larger for peak heating needs 
(when it is coldest) than for peak cooling needs. This is possibly an arte-
fact of the heterogeneous building data used: a greater percentage of 
profiles with cooling demand were from larger commercial buildings, 
which are modelled with greater accuracy than the small single-family 
households that formed the vast majority of heating profiles.

Figure 4e and Extended Data Fig. 2 summarize the error on daily 
electricity and gas demand across countries/regions, compared with 
other models in the literature (Methods). Across European countries, 
the errors on Hotmaps’ demand estimates are 1.63 ± 0.35 times larger 
than for the Demand.ninja when it is calibrated to each region9, while 
When2Heat’s errors are 1.70 ± 0.44 times larger11. Similarly, across US 
electricity markets, NREL’s ResStock and ComStock models give an 
error 1.65 ± 0.46 times larger than the calibrated Demand.ninja model10.

When the Demand.ninja is used with generic inputs (the same 
‘global average’ temperature thresholds and BAIT coefficients drawn 
from our training data applied to every region), these improvements 
are 1.46 ± 0.32 relative to Hotmaps, 1.47 ± 0.37 relative to When2Heat 
and 1.31 ± 0.39 relative to NREL. Across the 53 regions considered, the 
generic Demand.ninja model had lower RMSE than other models in all 
except one region (1.84% versus 1.82% in Texas).
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Fig. 3 | Ability of the Demand.ninja to model UK natural gas demand at daily 
resolution. a–g, The correlation between modelled HDDs and measured gas 
demand covering all end uses excluding power generation from ref. 78 over the 
period 2015–2019. Points show demand on individual days and lines show the 
derived linear regressions (n = 1,827). Each panel shows incrementally more 
sophisticated models, starting with the most common elements and moving 
to the most novel. a, A basic degree-day model using the national average 
temperature. b, Degree days calculated using gridded temperatures that have 
been population weighted. c, The addition of smoothing temperatures over the 
preceding two days. d, The addition of wind chill (higher wind speeds reducing 
the temperature index). e, The addition of humidity effect (greater humidity 

reducing the temperature index when it is cold or increasing it when it is hot—
note that this has a more influential impact in hotter climates). f, The addition 
of solar gains (greater irradiance increasing the temperature index). g, The 
superposition of multiple simulations with stochastically varied parameters 
to reflect the diversity of building construction and occupant behaviour. h, 
Summary of the improvement in modelling quality when adding each element 
of the Demand.ninja process. Each panel uses the optimal heating temperature 
threshold for the given model, so that the improvements shown relate to which 
elements of the BAIT process are included/excluded, rather than miscalibration 
of the model. Supplementary Fig. 45 shows the summary of model improvements 
(h) for electricity demand in four regions for comparison.
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Comparing the performance of the Demand.ninja model with 
different levels of customization reveals the relative impact of model 
design and calibration. Taking the example of When2Heat, using 
Demand.ninja with generic parameters reduces RMSE by 0.95 percent-
age points (from 3.06% to 2.11%), and the calibration of all parameters 
reduces this by a further 0.34 percentage points (to 1.77%). These reduc-
tions have a ratio of 74:26. Averaging across the three datasets, we find 
that model design provides 76% of the improvement. In a further trial 
(not shown in Fig. 4e), where temperature thresholds were calibrated 
for each region but generic BAIT parameters were retained, we find 

that calibrated temperature thresholds provide 8% and calibrated BAIT 
parameters the remaining 16%.

One possible use-case for the Demand.ninja is to model energy 
demand for countries, regions or buildings where metered demand 
is unavailable, meaning that calibration of model parameters is not 
possible. To explore the legitimacy of this idea, Fig. 5 shows validation 
of the model’s simulations when using only global generic parameters 
derived from our training dataset. Figure 5a–d shows simulated elec-
tricity demand in four countries from outside this training dataset. 
The average NRMSE across the four regions is 2.42% (R2 = 0.94), only 
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Fig. 4 | Quality of modelling daily energy demand. a,b, Summary of the error 
(Demand.ninja minus metered demand, normalized by maximum demand within 
each region) across 65,000 observations of daily electricity demand from 43 
countries and regions. a, The error over time: the central line shows the median 
(P50) of all days in each month across all regions; the shaded area shows the 5th 
and 95th percentiles (P5–P95). b, Summary of the error as a function of outdoor air 
temperature, showing the same percentiles as in a. Observations are grouped into 
50 bins with equal numbers of observations; hence, they have variable widths. Bins 
are coloured according to the average number of HDDs (red) and CDDs (blue) in 
the observations they contain, giving an indication of balance point temperatures. 
See Supplementary Figs. 46–88 for individual plots of each region. c,d, Summary 
of the error across 1.4 million observations of daily electricity and gas demand 
from 4,773 buildings, as a function of time (c) and external temperature (d). The 
error shows less temporal consistency in c than in a, as c comprises several datasets 
with different spatial and temporal coverages and building characteristics (for 

example, residential versus commercial), whereas the regional data in a have 
broadly the same time spans and identical scopes. See Supplementary Figs. 89–99 
for individual plots of each dataset. e, Summary of the NRMSE between measured 
demand and simulations from Demand.ninja and other models. Demand.ninja 
is shown with temperature thresholds and BAIT parameters calibrated for each 
region, and with generic parameters that are common across all regions (specified 
in Methods). The time frame varies between models (2010 for Hotmaps9, 
2016–2019 for When2Heat11 and 2018 for NREL10), so Demand.ninja was compared 
with each separately. European countries are represented by their ISO2 code and 
the United States is divided into power markets and Australia into states, each 
ordered by annual energy demand. All bars relate to electricity demand (shortened 
to E.) except one, which is for gas demand (shortened to G.). Extended Data Fig. 2 
visualizes the relative improvement across datasets, and Supplementary Tables 
5–8 give the underlying data and expand all acronyms used. Supplementary 
Figures 100–153 show the time-series comparison in each region.
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marginally worse than the average across the regions within the train-
ing set. The results show that Demand.ninja performs consistently well 
without calibration across a variety of climatic zones.

Figure 5e–h shows simulated energy demand in four randomly 
selected buildings from our training dataset, where the only specified 
input was the annual demand for heating and/or cooling. Even with 
this very limited input, which could be gathered from building energy 
performance certificates or annual energy bills, the Demand.ninja with 
only generic parameters can accurately simulate daily building energy 
demand across different continents.

Reduced gas demand from lowering building 
temperature
We model the impact of changing thermostat set-point temperatures 
on gas demand in individual buildings and across Europe and the United 

States by decreasing heating threshold temperatures throughout the 
year. Figure 6 shows the modelled impact of reducing the thermostat 
set point by 1 °C on gas demand in an individual house and summarized 
across 2,062 UK houses37.

Between October and May, the individual house consistently 
saves 0.26 kW (6.4 kWh d−1) because the daily average BAIT is at least 
1 °C below the household’s heating threshold and thus the maximum 
gas saving is realized each day. In contrast, between June and Sep-
tember, the daily average BAIT falls below the heating threshold only 
sporadically, and so gas is consumed (and saved) only on isolated cold 
days. This house sits centrally among the wider population of houses, 
with an annual saving of 10% of total gas demand (1,866 kWh yr−1). The 
percentage saving is normally distributed across the population of 
houses—most UK households are expected to save 8.1–11.1% (±1 s.d.) 
of their annual gas demand by turning the thermostat down by 1 °C. 
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without calibration. a–d, Simulations of national electricity demand for 
countries that were not included within the training dataset for calibration (that 
is, out-of-sample validation). e–h, Simulations of individual-building demand 
where the only specified input was the annual energy demand for heating and/
or cooling. a–d are validated against national electricity demand data79, for India 
(a), Mexico (b), Oman (c) and Ukraine (d), using the default BAIT parameters 
and temperature thresholds in all cases, so the only free variables were the three 
power coefficients used to establish the amount of non-thermal demand and 
scale heating and cooling degrees to demand. These parameters are given in the 
figure legends, represented per person (p.p.). e–h show simulations of randomly 

selected individual-building demand from four datasets, spanning different 
decades and continents: Milton Keynes, United Kingdom (e), Texas, United States 
(f), New South Wales, Australia (g), and Washington DC, United States (h). The 
coloured lines and shaded areas show modelled heating and cooling demand. 
The default BAIT parameters and temperature thresholds were used and Pbase 
was fixed at zero, giving an indication of model performance when given only the 
location of a building and its annual demand for heating and cooling, which are 
given in the legend. Supplementary Figs. 154–164 show simulations for a further 
ten randomly sampled buildings from each of the 11 building datasets used in 
this study. In all cases, national or building energy demand estimates could be 
improved if bespoke parameters were used.
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Absolute savings instead follow a log-normal distribution in line with 
the underlying distribution of household energy demand (that is, 
an average house consumes 15 MWh of heat, and similar numbers 
consume less than 7.5 MWh and more than 30 MWh). The median sav-
ing is 1,605 kWh yr−1, while the mean saving is higher at 1,748 kWh yr−1 
with the s.d. a factor of 1.51 (e0.410) lower or higher than the mean 
(1,065–2,419 kWh yr−1). With the 2022 residential retail tariff for gas 
of 11.4 p kWh−1 (ref. 38), the average annual saving is equal to £199 per  
household.

Figure 7 shows modelled monthly gas demand in the United States 
and Europe, covering all end-uses (residential, commercial and indus-
trial sectors), and excluding transformation (power generation and 
vehicle fuel), hereafter referred to as ‘total demand’. In both cases, 
the NRMSE between modelled and measured gas demand is 2.1–2.2% 
(Supplementary Figs. 165 and 166).

We estimate that lowering thermostat set points by 1 °C would 
achieve an annual saving of 240 TWh (817 billion cubic feet, bcf) of natu-
ral gas in Europe and 161 TWh (550 bcf) in the United States—4.4% and 
3.4% of total demand respectively. This equates to an annual emission 
reduction of 49 MtCO2 in Europe and 33 MtCO2 in the United States (1.5% 
and 0.7% of energy-related CO2 emissions respectively)39. The wholesale 
price of gas averaged €93.00 MWh−1 in Europe and $16.21 MWh−1 ($4.75 
per million British thermal units) in the United States over the heating 
season of 2021–2022 (Methods), and so these savings equate to €22 
billion in Europe and $2.6 billion in the United States. In the United 
States it is possible to assess the impact per sector, and we find annual 
savings of 101 TWh in residential buildings (7.1%).

The savings are relatively insensitive to BAIT, as they depend on 
the length of the heating season (how many days are below the heating 
threshold) rather than how severe or mild the peak of winter is. Despite 
year-to-year variations in gas demand (for example, compare 2012 and 

2014 winter seasons in the United States), the annual saving varies by 
just ±9 TWh in Europe and ±4 TWh in the United States (±4% and 3%). 
When modelling a 2 °C reduction in the heating threshold tempera-
ture, the annual gas saving roughly doubles to 464 TWh (1,582 bcf) in 
Europe and 312 TWh (1,066 bcf) in the United States (8.6% and 6.7% of 
total demand).

The geographic split in per capita gas savings and their cost 
implications are shown in Fig. 7c,d. Annual per capita savings are 
392 ± 237 kWh (4.2 ± 1.4% of total demand) across European coun-
tries and 472 ± 226 kWh (3.8 ± 1.2%) across US states, with cost savings 
of €36.45 ± 22.05 and $7.65 ± 3.65 respectively. The greatest absolute 
savings are in the United Kingdom and Germany (49 and 40 TWh) 
and in California and New York (15 and 12 TWh), while the greatest 
per capita savings are in the Netherlands (1,004 kWh) and Michigan  
(937 kWh).

Per capita gas and economic savings across regions are influenced 
largely by two factors: the length of the heating season and the heating 
power coefficient. More northerly regions with longer heating seasons 
generate larger savings with all else equal, because more days fall below 
the threshold temperature and are impacted by the intervention. Simi-
larly, regions with higher heating power coefficients (that is regions 
with larger or less efficient buildings, or a larger share of gas-based 
heating) generate larger savings, because each unit of delivered heat 
avoided saves more gas. The latter factor explains why New Mexico 
with a heating season of 144 days but a heating power coefficient of 
106 W °C−1 per capita realizes a greater saving than Washington state 
with a heating season of 196 days but a heating power coefficient of 
72 W °C−1 per capita. Similarly, this explains why the United Kingdom 
(with a heating season of 190 days) realizes a greater saving than Finland 
(240 days), as its heating power coefficient is 110 W °C−1 per capita, 
compared with just 35 W °C−1 per capita.
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Fig. 6 | The reduction in natural gas demand from turning down the 
thermostat by 1 °C in individual houses. a, The change in daily gas demand 
over one year (2009–2010) in a randomly selected British house from the 
Energy Demand Research Project dataset37. Measured demand is represented 
by the solid blue line. Modelled demand with a 1 °C lower heating threshold is 
represented by the green line and the shaded green area beneath it. The saving 

is shown as the shaded blue area and the dotted blue line. b,c, Summaries of the 
gas saving across the whole population of houses with metered gas demand from 
that dataset, relative to total gas demand in each house (b) and in absolute terms 
(c). Bars show the frequency distribution of savings, and lines give the fits to a 
normal and log-normal distribution, respectively. See Supplementary Table 3 for 
a summary of the Energy Demand Research Project dataset.
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Increasing CDDs due to climate change
Extended Data Figure 3 shows maps of HDDs and CDDs across the world. 
Regions at high latitudes have the highest numbers of HDDs and the 
lowest numbers of CDDs, whereas equatorial regions have the opposite. 
Note that meteorological reanalysis data do not incorporate urban heat 
island effects, and thus modelled CDD values will be lower, and HDDs 

higher, in highly urbanized regions. While cooling thresholds vary 
around the world (for example, they tend to be higher in low-income 
countries), this analysis used the model’s generic parameters to simu-
late CDDs in all regions (specified in Methods).

Figure 8 shows how CDDs have changed over the past 43 years. In 
almost all regions of the world (1,431 of the 1,518 countries, states and 
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Fig. 7 | Reduction in natural gas demand across the United States and Europe 
from lowering all building temperatures by 1 °C. a,b, Total monthly natural 
gas demand and savings in the United States (a) and Europe (b). Measured 
demand is represented by the solid blue line and is taken from refs. 43,72. 
Modelled demand with a 1 °C lower heating threshold is represented by the green 
line and the shaded green area beneath it. The saving is shown as the shaded blue 
area and the dotted blue line. c,d, The regional distribution of per capita demand 
reductions in Europe (c) and the United States (d). Economic savings are given on 

the secondary axis of each colour scale, calculated using the average wholesale 
gas price during winter 2021–2022. The European gas price is the average across 
Dutch TTF74 and British NBP75 and the US gas price is the Henry Hub price76, 
both averaged across the period from 1 September 2021 to 31 March 2022. The 
United States is represented by the 48 contiguous states and Alaska; Europe is 
represented by the EU27, the United Kingdom and Turkey. Countries and states 
shown in light green had no data available for gas demand.
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provinces we consider) CDDs have increased between 1980 and 2022 
due to rising temperatures. The absolute increase in CDDs is greatest 
in central Africa. For example, northern Angola now experiences an 
additional 686 CDDs per year on average when compared with 40 years 
ago (an increase of 172 per decade). This is largely because this equa-
torial region has high year-round temperatures, hence any increase 
in daily average temperature results in additional CDDs across more 
days. This rising need for cooling combined with limited capacity to 
meet existing—let alone new—cooling demand contributes towards 
this region being among the most vulnerable to impacts of future 
warming.

In contrast, the relative increase in CDDs is greatest in northern 
Europe because temperate regions experienced far fewer CDDs ini-
tially. For example, CDDs in London, United Kingdom, increased by 
an average of 5.0% per year (64% per decade) between 1980 and 2022, 
although the absolute increase was only five CDDs per decade. None-
theless, small increases in CDDs across Europe, where only a small 
percentage of residential buildings are fitted with air conditioning 
(that is, existing demand for cooling is largely unmet), could have a 
disproportionate effect on electricity demand40. Globally, we estimate 
that 5 billion people experience >25 additional annual CDDs each 
decade, and 1.3 billion people experience an increase of >50 each  
decade.

The impact of climate change on electricity demand for cooling 
can be assessed by combining the long-term increase in CDDs with 
cooling power coefficients for each region. By holding the cooling 
power coefficients constant, we isolate the effect of changing tem-
peratures from sociotechnical drivers such as population, building 
stock, uptake of air conditioning, and system efficiency. The United 
States consumes 66 TWh more electricity per year for space cooling 
than it would have done with the weather of 40 years ago. This increase 
is greatest in Florida, where annual CDDs have risen from 1,320 to 1,590 
since 1980, and the cooling power coefficient of 1.65 GW °C−1 equates 
to 40 GWh per degree day, giving 10.7 TWh additional demand due to 
hotter summers. Across Europe, additional demand is 19 TWh per year 
(greatest in Italy, at 5.6 TWh). In Japan and Australia, additional demand 
is 9 TWh and 3 TWh respectively. Supplementary Table 9 summarizes 
the relevant parameters for all studied regions.

Discussion and conclusions
We simulate hourly energy demand in buildings using meteorologi-
cal reanalysis data and validate simulated results against measured 
energy demand across 27 countries and ~5,000 buildings spanning 
four continents. The Demand.ninja can be applied globally and at spe-
cific locations, enabling users to simulate hourly energy demand in 
buildings worldwide. We show that it predicts energy demand more 
accurately (by a factor of 1.5) than similar but more geographically 
restricted models8–10.

The model’s main limitations centre around the availability of tem-
porally resolved energy demand data for calibration. While data used 
here come from a wider range of countries than for similar models8–10, 
there are still notable coverage gaps in South America and Africa. We 
require hourly or daily energy demand data at the national, regional 
or building level to expand calibration to new regions. As new data 
become available, simulations on the Demand.ninja platform can be 
updated. Energy demand data are also key for understanding how  
physical parameters of buildings (for example floor area, insulation and  
glazed area) translate to the high-level parameters the Demand.ninja  
model uses (that is BAIT and power coefficients) in individual build-
ings. For example, ref. 41 uses metered demand with rich metadata 
from 14,000 Danish households to correlate heating power coefficients  
with building area to infer average U values and other physical para-
meters. This would also be possible using the Demand.ninja if such 
data were available with global scope. However, users can employ the 
model’s generic parameters, which simulate out-of-sample demand 

accurately, or subjectively consider the range of parameters we find 
across large populations of diverse buildings to select those that best 
fit the building they seek to simulate.

We demonstrate two applications of the Demand.ninja by per-
forming exploratory analyses. Prompted by the war in Ukraine, 
European nations sought to reduce their reliance on Russian gas 
imports12–15. A substantial opportunity exists in lowering thermo-
stat set-point temperatures. Unlike other measures for reducing gas 
demand (for example, accelerating the deployment of renewables 
and improving energy efficiency13,42), thermostats can be adjusted 
instantly with no upfront financial costs, albeit at the expense of 
comfort levels and potentially health. We find that simply turning 
thermostats down by 1 °C would allow European countries to reduce 
gas consumption by 240 TWh yr−1 (equivalent to one-sixth of historical 
imports from Russia) and the United States to reduce consumption 
by 161 TWh yr−1 (equivalent to one-tenth of exports)13,43. The emissions 
savings (49 and 33 MtCO2 in Europe and the United States respec-
tively) are comparable to emissions from the two largest coal power 
plants in Europe and the United States respectively, a combined 15 GW 
of capacity44,45. With 2021–2022 gas prices, consumer energy bills 
could be reduced by €22 billion across Europe, and an average UK 
household would save around £200 annually by lowering building 
temperatures by 1 °C. Thermostat adjustments should therefore be 
considered by policy-makers as an important lever for addressing 
all three dimensions of the energy trilemma—security, affordability 
and sustainability.

Meanwhile, nearly half a million heat-related deaths occur annu-
ally, concentrated largely in Asia (46%) and Europe (37%)17, highlighting 
a substantial unmet demand for space cooling. We find that, in almost 
all regions of the world, CDDs are increasing as regional climates warm. 
This is not contingent on speculative future warming scenarios: it 
is evidence from historical weather data. In some regions, primar-
ily in Europe, CDDs are increasing by up to 5% per annum. Globally, 
more than 5 billion people are experiencing >100 additional CDDs 
per year compared with just a generation ago (1980s versus 2020s). 
As living standards continue to rise, increased demand for cooling 
could combine with greater uptake of space cooling technologies, 
putting electricity systems under greater strain while increasing 
cooling-related emissions. These problems will only be exacerbated 
as heatwaves become more intense46 and countries seek to reduce their 
energy consumption—factors that have already prompted curbs on air  
conditioning.

The broad applicability of the Demand.ninja complements tools 
for modelling spatial and temporal variability in energy supply such as 
www.renewables.ninja. There is high demand for spatially and tempo-
rally resolved energy demand data within the energy modelling com-
munity47. However, commercial confidentiality and other factors often 
force researchers to produce their own simulations, requiring time 
and effort to duplicate work that has been undertaken elsewhere. The 
model and simulations developed here are therefore made available 
online for others to use freely via www.demand.ninja.

The Demand.ninja could increase research productivity in many 
different areas. By disaggregating historical demand into heating, 
cooling and non-thermal components, the impacts of heating electri-
fication or uptake of air conditioning can be explored at the building, 
street, regional or national level. Hourly time series of demand from 
individual buildings can be synthesized using only annual demand 
and generic parameters (as in Fig. 5). Generating high-resolution time 
series of demand, including peak demand coincident across many 
buildings, could be used for system sizing to assess the need for infra-
structure upgrades in local distribution networks, or capacity adequacy 
in national electricity systems. Drawing on several decades of historical 
data allows system stress to be explored during extreme winters or sum-
mers. When combined with contemporaneous simulations of renew-
able power production, this tool could allow 100% renewable energy 
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scenarios to be assessed with greater fidelity, help network operators 
plan infrastructure and capacity upgrades, or allow individuals to 
assess the level of self-consumption of building-integrated renewables. 
Adjusting weather inputs or temperature thresholds could allow users 
to explore the impacts of climate change on future demand, or the 
impacts of changing consumer preferences (for example, imposing 

indoor temperature limits on municipal buildings). Equally, applica-
tions beyond energy could be explored, for example using cooling 
threshold temperatures to explore heatwave-induced excess mortal-
ity. We hope that by releasing the model open source we will help to 
overcome barriers to research in this area and enable new questions 
to be answered.
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Fig. 8 | Global maps of the change in annual CDDs over the last four decades. 
All countries are modelled with a cooling threshold of 20 °C derived from 
our global calibration. a, The increase in absolute annual CDDs per decade, 
determined through linear regression of data from 1980 to 2022. d, The relative 
increase in CDDs per decade, determined through log-linear regression of data 
from 1980 to 2022. CDDs are evaluated at the level of administrative subregions 
(that is states, provinces) within larger countries (Methods). b,e, The 43 year 
time series of annual CDDs for two exemplary regions in Angola and the United 
Kingdom, which experience large absolute and relative increases respectively. 

Black lines indicate the linear and log-linear fits to the data respectively. c,f, 
Population-weighted histograms of the increase in absolute and relative 
CDDs respectively, with shading that matches the colour scales used in the 
corresponding maps (a,d). These panels show how many people worldwide are 
exposed to different levels of CDD increase. Population exposure is evaluated at 
the level of administrative regions (for example, the 0.9 million citizens of Lunda 
Norte are modelled to all have experienced a 172 CDD increase per decade, or 738 
additional CDDs per year in 2022 relative to 1980).
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Methods
Data
Gridded meteorological data (box i in Fig. 1a) were sourced from 
MERRA-248, specifically temperature (T2M), solar radiation (SWGDN), 
wind speed (U2M and V2M) and specific humidity (QV2M). The newer 
ERA5 reanalysis offers higher spatial resolution but is not used because 
of an issue affecting Europe and the United States with mismatched 
wind speeds between model assimilation cycles (every 12 h)49, which 
also appears to affect surface temperatures. Meteorological data are 
aggregated from hourly resolution to daily means for computational 
tractability and because intradiurnal variations in energy demand are 
strongly driven by user behaviour and occupancy patterns.

Gridded population data (box ii) were sourced from GPW50 
to calculate the population living within each MERRA-2 grid cell 
(0.625° × 0.5°), and used to generate spatially aggregated HDDs, CDDs 
and demand. Other model inputs—weather coefficients (iv), threshold 
temperatures (v) and power coefficients (vi)—were derived by calibrat-
ing the model against real-world energy demand data (iii). These may 
also be customized to fit specific contexts or to perform exploratory 
analyses.

National and regional datasets of daily and monthly electricity and 
gas demand were sourced from as many regions as were readily avail-
able (Supplementary Table 2), and were used to calibrate and validate 
aggregated outputs of the model. These datasets cover all end-uses 
(for example appliances, lighting, industry, transport) as well as space 
heating and cooling. With electricity demand data, we ensured that 
‘embedded’ renewable generation (for example residential solar photo-
voltaics) was not netted off total demand. For natural gas, consumption 
in power stations was specifically excluded, as this is transformation 
rather than end-use, and would introduce spurious noise based on 
seasonal variation in wind power output in some countries. Economic 
activity is typically lower on weekends and during national holidays, 
meaning that electricity and gas demand are lower, so we separate 
these from weekdays. Data were sourced for as many years as possible 
up to the end of 2019, so that energy-related impacts of the COVID-19 
pandemic do not spuriously influence results51.

Electricity and gas demand data from individual buildings were 
used to calibrate and validate the model’s performance at the building 
level. These were sourced from the smart metering trials summarized in 
Supplementary Table 3, hence datasets were of varying size, quality and 
temporal resolution. As with national data, these were aggregated to 
daily resolution and weekends and holidays were separated. Buildings 
with less than 200 days of data were removed as they do not capture 
the full seasonal variation in demand. We then ran a change-point 
regression52 of demand in each building against temperature to 
remove those where energy demand was completely independent 
of the weather. This removed unconditioned buildings (for example, 
warehouses with only lighting and appliances), or buildings that were 
conditioned with a fuel not being metered (for example, electricity 
demand from a home with gas heating and no air conditioning). Build-
ings with heating but no cooling (or vice versa) are included, but report 
only one change point for the service that is used (see, for example,  
Fig. 5e,f).

As a compromise between obtaining a representative number of 
buildings and maintaining tractability, we typically discarded profiles 
with an R2 coefficient below 0.6 in smaller datasets, or below 0.8 in 
datasets with over 10,000 buildings. These thresholds were chosen to 
exclude profiles that have a weak (or no) correlation with the weather 
due to ‘exogenous’ factors that cannot reasonably be expected to be 
captured. Such factors include buildings with non-standard occupancy 
patterns (for example, holiday homes or heating timers) or that suf-
fered monitoring or data entry errors. Examples of discarded profiles 
are shown in Supplementary Fig. 167. Profiles that instead showed a 
weak correlation due to poor model skill were generally above these 
R2 thresholds (and included in the analysis), but any such profiles that 

had been excluded were manually identified and retained to provide 
a fair evaluation. Examples of such profiles can be seen in Supplemen-
tary Figs. 154, 156 and 157 (for example, R2 < 0.5). Each of the remaining 
profiles was then screened, and anomalous points were removed (for 
example, sequences of zero values, which indicated holidays or failure 
of the data loggers), following the process in ref. 53.

The building-adjusted internal temperature
The BAIT is a proxy for the temperature it would ‘feel like’ inside a build-
ing with no active heating or cooling, accounting for solar gains, wind 
chill, humidity and thermal inertia. In other words, it is the temperature 
that an unconditioned building’s thermostat would register, which 
serves as the physical link between weather conditions and heating and 
cooling demand. The conception of this approach is discussed in Sup-
plementary Note 5. BAIT should more adequately describe heating and 
cooling demand compared with temperature alone, as demonstrated 
in Supplementary Fig. 168.

Solar gains through glazed areas increase the internal temper-
ature of a building, while higher wind speeds increase ventilation 
and the air change rate of a building, thereby decreasing the internal 
temperature of the building33. The effect of humidity depends on 
air temperature. At high temperatures humid air prevents the body 
from sweating, which increases the feels-like temperature, while at 
low temperatures humid air deposits cold moisture on warm skin, 
increasing its thermal conductivity and thus decreasing the feels-like  
temperature54.

We chose to incorporate these variables because they are used 
in existing human-related temperature indices and have been shown 
to improve the accuracy of physical and statistical models of building 
energy demand33,55,56. Existing indices use a variety of mathematical 
forms to express deviations from outdoor temperatures (that is linear, 
quadratic and inverse relationships)54,57,58. We use simple linear relation-
ships to derive our index, as more complex forms were found to make 
little difference to BAIT but increase the risk of overfitting.

We derive BAIT in a way that is unbiased towards temperature 
so that measures derived from it (such as HDDs and CDDs, which rely 
on threshold temperatures) have magnitudes comparable to those 
derived from raw temperature. While a BAIT of zero will depend on 
how sunny, windy and humid it is, it should generally correspond to 
an air temperature of zero and not be systematically higher or lower 
(as seen in Fig. 1b). If BAIT were modified by absolute values of solar 
irradiance, wind speed and humidity it would yield lower tempera-
tures during winter and higher temperatures during summer, hence 
the threshold temperatures for heating and cooling become skewed. 
To eliminate this bias, we calculate the global average solar radiation, 
wind speed and humidity as a function of temperature to be used as 
counterfactuals. We perform a combined linear regression across all 
locations considered in this study, correlating solar radiation, wind 
speed and humidity against temperature. Results from all regressions 
are shown in Supplementary Fig. 169. The equations derived from these 
regressions are simplified to give

BAITd,l = T + x(S − S∗) − y(W −W∗) + z(H − H∗)(T − T∗) (1)

where for each day (d) and grid location (l) BAIT is in °C, T is outdoor air 
temperature (°C), S is solar radiation (W m−2), W is wind speed (m s−1), 
H is relative humidity (g water per kg air), x, y and z are coefficients for 
solar radiation (°C W−1 m2), wind speed (°C m−1 s) and relative humidity 
(°C g−1 kg) respectively and S*, W*, H* and T* are the counterfactuals for 
air temperature, solar radiation, wind speed and humidity respectively.

Counterfactuals are expressed as linear or exponential functions 
in relation to temperature (equation (2)). The counterfactual tempera-
ture is the point at which humidity has no influence on energy demand 
and is given the value of an assumed balance point temperature, where 
neither heating nor cooling is required.
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S∗ = 100 + 7T, W∗ = 4.5 − 0.025T, H∗ = e1.1+0.6T, T∗ = 16. (2)

Buildings also store heat within their thermal envelopes, provid-
ing an inertia to fluctuations in the outdoor temperature. The thermal 
inertia of buildings is related to their level of insulation: well insulated 
buildings retain heat for longer than poorly insulated buildings, so 
have greater inertia. In much of the degree-day literature the effects of 
thermal inertia are ignored59,60; however, recent studies8,61 and industry 
analyses62,63 have employed temperature ‘smoothing’ to account for the 
thermal inertia of buildings. Here, we smooth BAIT over the preceding 
two days using

BAITd,l =
BAITd,l + σBAITd−1,l + σ2 BAITd−2,l

1 + σ + σ2 (3)

where for each d and l, σ is the smoothing factor, the weight applied to 
the previous day’s temperature, in the range of [0–1].

BAIT and smoothing coefficients are bespoke to a given build-
ing, and can be defined by the user for exploratory analysis, or found 
through calibration to match a specific dataset of energy demand 
(Calibrating the model). Including wind speed, solar radiation, humid-
ity and temporal smoothing improves the model’s ability to describe 
heating demand but worsens that for cooling demand. We hypoth-
esize that this is because of human behaviour. When it is hot, some 
occupants open windows to provide a cooling breeze. However, when 
it is cold, occupants do not open windows as this cools the building 
further. Therefore, at low temperatures, buildings are continuously 
insulated from the outdoors, retaining a ‘memory’ of the previous 
day’s conditions, and are constantly affected by solar gains and wind 
chill33,64. At high temperatures, the accumulated effects of the previous 
days are reset once any windows are opened, hence the raw instanta-
neous outdoor temperature becomes a better descriptor of cooling 
demand33,64. We address this issue by creating the final index from a 
weighted blend of BAIT and raw temperature, with weighting factors 
that depend on the raw temperature. The blend is active between a 
lower and upper threshold (the point at which people start to open 
windows and the point at which everyone who is going to has opened 
their windows), and these are mapped to the range of 10 (from –5 to 
+5) of a sigmoid function (meaning that they correspond to a 1% and 
99% blend):

B = Bmax
1 + e−B′ (4)

B′ = (T − 0.5 (BU + BL))
(10)

BU − BL
(5)

where B is the blending amount, Bmax is the maximum amount of 
blending to apply, B′ is the input to the sigmoid function and BU and 
BL are the upper and lower thresholds for blending. Default values of 
Bmax = 0.5, BU = 15 °C and BL = 23 °C were applied as these were found to 
give the best fit with the datasets we use. The interpretation of this is 
that between daily-average temperatures of 15 and 23 °C people begin 
opening windows, and beyond 23 °C buildings lose half of the influence 
of temperature smoothing and other meteorological variables due to 
changes in occupant behaviour.

The final temperature index is then calculated using

BAITd,l = (BAITd,l (1 − Bd,l)) + (Td,l Bd,l) . (6)

Calculating degree days
HDDs and CDDs are measures of by how much (in °C) and for how 
long (in days) the outdoor air temperature was higher or lower than 
a given balance point temperature. The thresholds of the balance 

point are the temperatures above which heating is required and 
below which cooling is required. The threshold temperature for 
heating is typically lower than that for cooling because the balance 
point covers a range of temperatures in which occupants require 
neither heating nor cooling (that is, people are willing to tolerate a 
range of internal temperatures throughout the year). Here, we use 
BAIT and thresholds based on BAIT in place of outdoor temperature 
to calculate HDDs and CDDs:

HDDd,l = (Theat − BAITd,l)
+ (7)

CDDd,l = (BAITd,l − Tcool)
+ (8)

where for each d and l Theat is the threshold BAIT for heating (°C), Tcool is 
the threshold BAIT for cooling (°C) and the + indicates that only posi-
tive values are counted.

The geographic extent of individual grid cells in reanalysis mod-
els (0.625° × 0.5° for MERRA-2) means that “climatic variables rep-
resent the background regional conditions without any influence 
from urban areas”65. They neglect the urban heat island effect, which 
increases surface temperatures in urban areas by around 1–2 °C (ref. 
65), and so threshold temperatures in major cities may have a nega-
tive bias.

As part of our calibration, we use national and regional gas and 
electricity demand data, and so HDDs and CDDs must be aggregated 
accordingly. We calculate HDDs and CDDs for each grid cell that lies 
within the country or region, and then sum these together weighting 
each location’s values by the population contained within that grid cell:

HDDd,c = ∑
l∈ c

HDDd,l pl
pc

(9)

CDDd,c = ∑
l∈ c

CDDd,l pl
pc

(10)

where for each day (d), country/region (c) and grid location (l) p is 
population density, taken from ref. 50.

This approach relies on four simplifications: it uses daily aver-
age temperatures, which ignore diurnal variation; calibration and 
validation are based on total energy consumption, which includes 
end-uses other than space heating and cooling; regional aggregates 
are weighted according to population density, which neglects the 
locational distribution of non-residential buildings, and the aggrega-
tion assumes a simple relationship between population density and 
building size. These points are expanded upon in Supplementary 
Note 6.

Our validation reveals heterogeneity in building weather response 
and occupant behaviour within and between the datasets of individual 
buildings. This would be neglected if a single set of model parameters 
were used to simulate national or regional demand, as this would imply 
that every building has the same response to the weather (for example, 
level of insulation, air-tightness, amount of glazing) and every person 
has the same preferences for internal space temperature. To reflect the 
observed heterogeneity, the degree days for each grid cell were calcu-
lated 36 times using different combinations of parameters, and then 
averaged across all samples. Each parameter was varied around its cen-
tral value using maximin Latin hypercube sampling66. A six-dimensional 
hypercube was constructed with each dimension representing a model 
parameter, and samples were optimized to maximize the minimum 
distance between design points so that the combinations of param-
eters were well spread across the input space. These six parameters 
and the optimization used to derive their central values are described 
in Calibrating the model. Each dimension of the hypercube was then 
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translated from a [0–1] uniform distribution to a normal distribution, 
with an s.d. that reflects the mean s.d. seen within all building datasets 
(Supplementary Table 3).

Translating degree days into energy demand
We employ a simple linear model to translate degree days (derived 
from BAIT) into energy demand. This is defined by the five parameters 
illustrated in Fig. 1c, which shows the relationship between BAIT and 
electricity demand in a single home in Austin, TX.

The vertical lines (Theat) and (Tcool) show the optimized threshold 
temperatures for heating and cooling. These thresholds are influ-
enced by both behaviour (for example, the required comfort levels of 
occupants) and technical characteristics of the building (for example, 
passive gains from occupants and appliances are more influential in 
well insulated buildings, lowering the heating threshold for a given 
level of comfort). The region between Theat and Tcool is the balance point 
temperature where neither heating nor cooling is required, and Pbase 
in this window is independent of BAIT (for example, energy demand 
for water heating, lighting and appliances). When considering only 
the energy consumed for space heating and cooling, this baseline is 
equal to zero. The slopes (Pheat) and (Pcool) are the power coefficients 
for heating and cooling, which determine the additional energy con-
sumed per HDD and CDD. For the home in Fig. 1c, we estimate heating 
and cooling power coefficients of 0.64 and 0.79 kWh d−1 °C−1. During 
the exceptional winter storm of February 2021, when temperatures 
in Austin fell to −12 °C, we predict that this home would consume an 
additional 16.2 kWh d−1 for heating, contributing to the power crisis 
that left 11 million people without power67. While heating and cooling 
power coefficients are roughly symmetrical in Fig. 1c, they can be highly 
asymmetrical elsewhere.

The Demand.ninja can be used for two purposes: (1) ‘what if ’ 
simulations, where a user supplies the above parameters to estimate 
the energy demand of a building in a given location, and (2) to predict 
the historical energy demand in a building or region. For the latter, 
we perform a linear regression with fixed effects between meas-
ured daily energy demand, HDD, CDD and two time indicators. The 
first of these, W, is a binary indicator that splits working days from 
weekends and national holidays. The second, D, is used when model-
ling national or regional demand to account for growth in demand 
due to population or economic factors. For example, electricity 
demand in Great Britain has fallen by 1.5% per year since 2012 due to 
improving efficiency68. The regression for total power demand (Ptotal)  
is given by

Ptotal = Pbase + Pheat HDD + Pcool CDD + αW + βD + ε (11)

where Pbase is in GW, Pheat and Pcool are in GW °C−1 and ε is the model error 
term. α (in GW) and β (in GW yr−1) are the time coefficients, which rep-
resent the impacts of differences in societal behaviour and long-term 
trends in power demand.

The impact of α is visible in Fig. 2e as the gap between pink and 
green points (weekdays and weekends). As this is defined as a fixed 
offset (in the case of New York, –1.5 GW) it has no impact on thermal 
demand. It does not affect the quality metrics reported throughout the 
paper, as these focus on weekday demand only. It is incorporated so 
that the model can produce 8,760 h time series of demand including 
the weekend/weekday split. The impact of β is not visible in Fig. 2 as 
New York has near-zero annual growth in electricity demand. A more 
prominent example is given in Supplementary Fig. 17, the electricity 
demand in Ireland, which has increased in part due to the growth of the 
technology industry and data centres.

A similar approach was used to create estimates of total national 
demand from other models for comparison with the Demand.ninja, 
as described in Supplementary Note 7 and shown in Supplementary 
Figs. 100–153.

Calibrating the model
This section is concerned with deriving the optimal values for BAIT 
parameters (box iv in Fig. 1a) and balance point temperature thresh-
olds (box v).

For each individual building and each national dataset, we used 
a two-stage process to optimize the model parameters. A differential 
evolution algorithm69 implemented in R70 was used to find the BAIT 
parameters and temperature thresholds (x, y, z, σ, Theat, Tcool) that mini-
mized the s.d. of residuals between modelled and measured demand. 
This first tests a randomly selected population of candidate param-
eters, and evolves the population towards better solutions (with lower 
error on modelled demand) by mimicking evolutionary processes. 
An initial population of 150 parents was used (25 times the number of 
parameters) and 250 generations were tested to ensure convergence.

Tests were repeated with different random seeds to ensure that 
the stochastic initial population did not materially influence the final 
outcome (that is, no deviation within the first four significant figures 
of any resulting parameter). For each set of parameters, BAIT was 
constructed (equations ((1)–(6)), and HDDs and CDDs were calculated 
from it (equations (7)–(10)). Energy demand was then estimated (equa-
tion (11)) to find the optimal energy parameters (Pbase, Pheat, Pcool, α, β).

The datasets used for calibration are summarized in Supplemen-
tary Tables 2 and 3. The results from this process are summarized in 
Supplementary Table 4 and Supplementary Figs. 43 and 44. The spread 
of results both within and across datasets reflects the diversity of build-
ing types, living standards and occupant behaviours. Supplementary 
Note 8 discusses regional differences in parameters and, wherever pos-
sible, compares our estimated parameters with others in the literature.

Resolving profiles to hourly resolution
We use daily average meteorological data rather than hourly or sub-
hourly data. Variations in demand from day to day are primarily driven 
by weather, while variations in hourly demand are often driven by 
behavioural choices and occupancy patterns. For example, many com-
mercial buildings are only heated or cooled during working hours (for 
example, 9:00 to 17:00, Monday to Friday), while many residential 
buildings are heated only in the evenings and mornings. If demand were 
modelled using hourly temperature the greatest demand for heating 
would occur during the night when temperatures are at their lowest.

We upscale the time series of heating, cooling and total demand 
from daily to hourly resolution using representative 24 h diurnal pro-
files for each component of demand. We use globally representative 
profiles for heating and cooling demand as we find these are relatively 
consistent across regions. When calculating total electricity demand, 
we use regionally and seasonally disaggregated profiles for baseline 
demand (for non-thermal end-uses) to reflect the different cultural 
and economic contexts around the world.

Diurnal profiles for the three components of demand are derived 
by following seven steps.

 (1) Run the model with optimal parameters for each country/re-
gion to derive HDDs and CDDs for each day.

 (2) Group days according to weekday/weekend and summer/win-
ter/shoulder (spring and autumn) days.

 (3) Classify days in each group according to the number of HDDs 
and CDDs. Days that are above the 90th percentile for HDDs or 
CDDs for that specific region and season are classified as cold or 
hot days, respectively. Days that fall below the 10th percentile 
for both HDDs and CDDs are classified as mild days.

 (4) Identify electricity demand within each hour of the day for all 
days within each of these groups (cold/mild/hot, weekday/
weekend, summer/winter/shoulder) and summarize the diurnal 
profile for each group using its mean and s.d.

 (5) Subtract mean hourly electricity demand profiles on mild days 
from cold and hot days for each group to isolate the profile of 
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temperature-dependent electricity demand, which is used as a 
proxy for heating and cooling demand.

 (6) For heating and cooling profiles, calculate the mean profile 
across all days (aggregating weekday/weekend and summer/
winter/shoulder) to give a characteristic hourly diurnal profile 
for each country or region.

 (7) Further aggregate the heating and cooling profiles by calculat-
ing the mean across all national and regional profiles, weighted 
according to the share of demand within each region, to give a 
single globally representative hourly diurnal profile for each.

The profiles from steps 1–4 are visualized in Supplementary Figs. 
170–206 for all countries and regions that we study. Comparison 
between the panels within each subfigure shows that baseline profiles 
(shown by black lines) are relatively variable over time within any given 
country, but additional demands from heating and cooling (shown by 
the heights of the red and blue shaded areas) are relatively constant in 
comparison. This provides the rationale for step 6: the baseline profile 
(for non-thermal electricity demand) needs to be specific to the season 
and working versus non-working days, but the profiles for heating and 
cooling do not. The profiles for heating and cooling demand that result 
from step 5 are visualized in Supplementary Fig. 207 for all countries and 
regions we study. Comparison between the panels shows that these pro-
files are relatively consistent around the world, providing the rationale 
for step 7. These simplifications are discussed further in Supplementary 
Note 6, and the final output of step 7 is shown in Extended Data Fig. 1.

The final hourly time series of demand for each country/region is 
then assembled by first classifying days according to their type (week-
day/weekend) and season (summer/shoulder/winter). The non-thermal 
demand, Pbase, on each day is then convoluted with the respective base-
line profile (black lines in Supplementary Figs. 170–206) for the specific 
country/region. Finally, the demands for heating and cooling are con-
voluted with the global average heating and cooling profiles (Extended 
Data Fig. 1) across all days, and added to this baseline.

Modelling the impact of lowering building temperatures
We model the impact of turning down the thermostat by adjusting the 
heating threshold temperature, which relies on the assumption that 
reducing the threshold temperature by 1 °C is equivalent to reducing 
the desired internal temperature of the building by 1 °C. This implies 
that heating a house to 20 °C when it is 10 °C outside should require 
the same energy as heating to 21 °C when it is 11 °C outside. This holds 
in general, as the rate of heat loss from a building is proportional to the 
difference between internal and external temperatures for the primary 
sources of heat loss (conduction and air changes)71.

We model gas savings in individual buildings and across regions 
using the same approach but with different data inputs. For buildings, 
we use daily gas demand data from 2,062 houses from the UK-based 
Energy Demand Research Project dataset37. For regions, we use monthly 
gas demand data for 29 countries in Europe (EU27, United Kingdom 
and Turkey)72 and 49 US states (all except Hawaii)43. We first calibrate 
the model using measured demand in each building or region to give 
optimal parameters (summarized in Supplementary Table 4). We then 
decrease the optimal heating threshold by 1 °C across all buildings and 
regions. The difference between gas demand in the optimal simulation 
and with the decreased threshold temperature is the gas saving. Gas 
savings are converted into emission savings and economic savings 
using the emission factor in ref. 73 and the average price of natural gas 
from 1 September 2021 to 31 March 2022. The Dutch TTF74 and British 
NBP75 prices are averaged for Europe, and the Henry Hub price76 is used 
for the United States.

Modelling global heating and cooling demand
The Demand.ninja can be generalized to estimate heating and cool-
ing demand in any region or building globally. We first calculate BAIT 

at all locations globally and then use BAIT to calculate degree days. 
Degree days are calculated at the subnational level within larger 
countries, using GADM1 subdivisions (that is, at the level of US states 
or Chinese provinces), except in Europe, where we use NUTS level 
2. We calculate HDDs and CDDs at the national level in 132 smaller 
countries, with a land area below 15,000 km2 and a population below 
50 million. Deriving bespoke BAIT parameters and heating and cool-
ing thresholds is useful for maximizing the quality of the fit when 
predicting metered demand in known buildings; however, these 
parameters must be generalized when modelling energy demand at 
locations without temporally resolved data on energy demand. We 
therefore calculate BAIT using the following global average param-
eters (approximated from the average values in Supplementary Table 
4): a smoothing coefficient of 0.50 ± 0.23 d−1, solar coefficient of 
0.012 ± 0.008 °C W−1 m−2, wind coefficient of –0.20 ± 0.17 °C (m s−1)−1 
and humidity coefficient of 0.050 ± 0.065 °C (g kg−1)−1. HDDs and 
CDDs are then calculated using thresholds of 14 ± 2 and 20 ± 2 °C 
respectively, approximately the average across all regions for which 
we have daily electricity and/or gas demand data for model calibra-
tion. These are the default parameters used in the Demand.ninja’s 
web interface.

To produce the maps in Fig. 8, CDDs were calculated using the 
same generic parameters in all world regions for each year between 
1980 and 2022, and the change in CDDs over time was determined 
through linear (for absolute change) or log-linear (for percentage 
change) regression.

Data availability
Results from the model that support the findings of this study are 
presented in the article and its Supplementary Information. Additional 
data are available from the Demand.ninja website (https://demand.
ninja). The metered energy demand data used for validation are availa-
ble from the sources given in Supplementary Information. The weather 
data used in this study are available from NASA (https://gmao.gsfc.nasa.
gov/reanalysis/MERRA-2/). Source data are provided with this paper.

Code availability
The Demand.ninja model is available from the GitHub code repository 
in Python (https://github.com/renewables-ninja/demand-ninja) and R 
(https://github.com/iain-staffell/demand_ninja).
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Extended Data Fig. 1 | Global average diurnal profiles for heating and cooling 
demand. Lines show the mean across all the countries and regions we consider 
(shown in Supplementary Fig. 207), weighted by annual demand in each region. 

Shaded areas show the weighted standard deviation across the regional means, 
which captures the diversity between countries but excludes the diversity 
between days within countries.
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Extended Data Fig. 2 | Improvement in accuracy of modelling daily electricity 
demand with Demand.ninja relative to other models. Data points show the 
normalised root mean squared error (NRMSE) between modelled and measured 

demand from Demand.ninja and other models: 2016–2019 for When2Heat11, 2010 
for Hotmaps9 and 2018 for NREL10. Demand.ninja is shown with temperature 
thresholds and BAIT parameters calibrated for each region. See Fig. 4e.
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Extended Data Fig. 3 | Global maps of average annual heating and cooling 
degree days. The colour of each region shows the mean number of degree 
days experienced across the years 2010-19. Panel (a) shows heating degree 
days (HDDs) calculated with a threshold temperature of 14 ± 2 °C. Panel (b) 
shows cooling degree days (CDDs) calculated with a threshold temperature of 

20 ± 2 °C. Both panels use the global average BAIT parameters in all regions: a 
smoothing coefficient of 0.50 ± 0.23 day−1, solar coefficient of 0.012 ± 0.008 °C/
(Wm2), wind coefficient of –0.20 ± 0.17 °C/(ms−1), and humidity coefficient of 
0.050 ± 0.065 °C/(gkg−1).
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