High-performance computing (HPC) for the modelling of energy systems

Stefan Pfenninger Climate Policy Group / Dept of Environmental Systems Science

RWTH Aachen/FZ Jülich 23.4.2018

Nothing magic - lots of computers strung together. The secret sauce is the software and parallelising our problems.

2. Why HPC for energy modelling?

It is easy to build an energy system model that takes a long time to solve.

3. How to apply HPC to energy modelling problems?

The quickest route to HPC is to take one model and run it many times over with different constraints.

2. Why

An individual computer's speeds are limited

The solution is to parallelise!

2. Why

3. How

Lots of computers strung together

A HPC "cluster" at a university

An individual computer used in HPC

https://scicomp.ethz.ch/w/images/7/76/ETH_Zurich_Euler_II_and_I_in_LCA.jpg http://www.advancedclustering.com/wp-content/uploads/2017/07/ACTblade-angle-top.png

3. How

Lots of computers strung together

Highly parallel file system

2. Why HPC for energy modelling?

3. How to apply HPC to energy modelling problems?

2. Why

Let's build a model of the UK power system

- Divide into 20 electricity grid zones
- Simulate hourly power generation and demand = 8760 time steps
- 20 technologies like nuclear power plants, offshore wind, ...
- Goal: supply electricity demand at least cost (=optimisation problem)

2. Why

Let's build a model of the UK power system

20 zones

- * 20 technologies
- * 8760 timesteps
- * 5 types of constraints =
- 17.5 million constraints

Z1_1
71_2 71.3
21 4 755 0 22 21 4 755 0 22
Z6 Z7 Z7 Z6 Z7 Z7
2 2 2 9 2 1 2 1 0 2 1 0 2 1 0 2 1 2 1 0 2 1 2 1
Z13 60 844.0 500 E 514 214 0 50000 - Z15 302.0 216 216
100

2. Why

Let's build a model of the UK power system

17.5 million constraints

Assume each constraint = 1 nanosecond

 \rightarrow 5 hours!

It is easy to build an energy system model that takes a long time to solve!

2. Why HPC for energy modelling?

3. How to apply HPC to energy modelling problems?

We realised:

It is easy to build an energy system model that takes a long time to solve.

Sounds like a job for high performance computing!

But we have a problem:

Parallelising optimisation problems is not straightforward.

2. Why

3. How

Optimisation problems as "jewels"

We know that optimum is one of the corners, but not which one.

Hydropower generation

Solving linear problems by climbing towards optimality

Don't know where the goal is while climbing

 \rightarrow cannot do this in parallel.

2. Why

3. How

So we cannot easily parallelise this model

How can we still exploit the power of HPC, without coming up with new algorithms?

2. Why

An example problem: modelling renewable integration

Running scenarios in parallel

Nothing magic - lots of computers strung together. The secret sauce is the software and parallelising our problems.

2. Why HPC for energy modelling?

It is easy to build an energy system model that takes a long time to solve.

3. How to apply HPC to energy modelling problems?

The quickest route to HPC is to take one model and run it many times over with different constraints.

4. Questions

Or ask by email: stefan.pfenninger@usys.ethz.ch