Decision support with energy system modelling (with examples using Calliope)

Stefan Pfenninger Assistant Professor Faculty of Technology, Policy and Management

EPSRC Supergen Energy Networks Hub 22 April 2021

Eliminating energy emissions is urgent

Agriculture, forestry, land use, and other

17 Gt CO_{2eq}

No agreement on how to proceed

Schweiz

Disagreement about the technical implementation

Huber, Heeren and Pfenninger (in review). Environmental Science and Technology www.svp-dottikon.ch/media/Kant-_Nationale_SVP_ab_2016/Abstimmung_2017_05_21_Energie-Ztg.pdf 3

Disagreement about what is socially and politically acceptable

Energy system modelling

My model has higher resolution than the real world!

Ye Olde Ivory Tower

Ladders of practicality

Answering scientific questions that are also policy relevant

Self-sufficiency in policy discussions

by 2036."

sufficient in renewable energy."

- "Davos is aiming to become energy self-sufficient
- <u>https://www.davos.ch/en/information/meeting-</u> place/industry-focal-points/energy/environment

"We [the UK] can make ourselves energy self-- https://www.bbc.com/news/election-2017-40120184

Continental or regional scale supply?

Continental supply: Wind and PV at best locations

Regional supply: Regions self-supply *on average over the year*

Tröndle et al. (2020). Joule. https://doi.org/gg8zk2

497 regions

Continental supply requires 2.5x the capacity of today's electricity transmission system

What if I don't want to build so many new transmission lines?

7

Less integrated systems are possible, but cost more

Continental

Tröndle et al. (2020). *Joule*. <u>https://doi.org/gg8zk2</u>

497 first-level administrative units

Tröndle et al. (2020). *Joule*. <u>https://doi.org/gg8zk2</u>

4 hours, single year, 2007-2016

How did we model it?

Euro-Calliope v1.0

Technologies

- Short and long-
- term storage

Temporal resolution

Sensitivity analysis

- 10 weather years
- Uncertainty in technology costs, capital cost, bioenergy availability (by sampling a surrogate model)

Reproducible workflow

github.com/calliope-project/ euro-calliope

Cost-optimal deployment of wind and PV across Italy

Lombardi et al. (2020). *Joule*. <u>https://doi.org/gg8z6v</u>

Going beyond cost minimisation

"Don't worry, the Sardinian people are used to all the oil refineries, they will be fine"

Finding spatially explicit alternatives

Vind Vind

Wind and PV annual production

Methane and Hydrogen production and methane flow along transmission lines

Π

Potentially problematic technologies

Use of PV in the solution

Lombardi et al. (2020). *Joule*. <u>https://doi.org/gg8z6v</u>

12

Lombardi et al. (2020). Joule. https://doi.org/gg8z6v

Ladders of practicality

Answering scientific questions that are also policy relevant

Cash et al. (2006). Science, Technology, & Human Values. https://doi.org/drtgjc

The "loading dock" approach

Ladders of practicality

Answering scientific questions that are also policy relevant

Co-producing model-based scenarios directly with users

Getting models and decision-makers in the same room

NREL ENGAGE, <u>https://engage.nrel.gov/</u>

VRE Transforming ENERGY

Photo © NREL

Also see our own spin on this kind of approach in the European context, in the SEEDS project: https://www.chistera.eu/projects/seeds

How did they model it?

Calliope

ENGAGE modelling interface

HAVEN visualisation tool

17

What kinds of models help to build ladders?

Answering scientific questions that are also policy relevant

Co-producing model-based scenarios directly with users

How are models made?

and scientific discourses (often implicitly)

Example 1 - Classification: Including or excluding certain technologies like CCS, nuclear power, or biomass.

Example 2 - Problem definition: If climate change is a market failure to account for externalities, then a carbon price is the solution.

- One should not ask: "Are the assumptions correct?"
- Instead one should ask: "What do the assumptions represent?"

Ellenbeck and Lilliestam (2019). Energy Research & Social Science. https://doi.org/10.1016/j.erss.2018.08.021

• Assumptions in energy system models reflect and reproduce societal

How are models used?

- Impact assessment
- Target setting
- Policy options design

Modelling

Süsser et al. (2021). Energy Research & Social Science. https://doi.org/10.1016/j.erss.2021.101984

The SENTINEL project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 837089.

Policymaking

- Data and assumptions
- Study scope
- How results are used

Transparent is better than obscure

ccgt:
essentials:
<pre>name: 'Combined Cycle Gas Power Plant'</pre>
color: '#FDC97D'
parent: 'supply'
carrier out: 'electricity'
constraints:
energy_cap_max: 40000 # kW
energy_ramping: 0.8
costs:
monetary:
energy_cap: 750 # USD per kW
om_con: 0.02 # USD per kWh

Human readability of energy models is one of Calliope's design goals <u>https://www.callio.pe/</u>

Transparency

Un<mark>dersta</mark>ndability

Open code

Open data

Simple is better than complex

Making it easy to build question-specific models is one of Calliope's design goals

Pickering and Choudhary (2019). Applied Energy. <u>https://doi.org/10.1016/j.apenergy.2018.12.037</u> Golinucci et al. (2020), FEEM Working Paper. <u>https://dx.doi.org/10.2139/ssrn.3733717</u>

Design a district energy system under high demand uncertainty

Impact assessment of policies for the Kenyan coffee sector

alliope

www.callio.pe

Thanks to:

Calliope developers including Francesco Lombardi, Bryn Pickering, Tim Tröndle

Collaborators including Diana Süsser, Johan Lilliestam, Anthony Patt

Scale, cost, trade-offs

Tröndle et al.

and infrastructure

(2020)

Transparency: Open code and data are not enough, implicit underlying assumptions need to be communicated too

How

Examples

Ideally, energy system modelling answers scientific questions that are also policy relevant

What

Energy system models lend themselves to being used directly in the co-production of scenarios with users

Simplicity: Simpler, human readable models make the task of understanding these underlying assumptions easier

Spatially explicit alternatives (SPORES)

Lombardi et al. (2020)

s.pfenninger@tudelft.nl

Euro-Calliope V2.0 A model of the European energy system built with Calliope

a. Annual demand

Euro-Calliope v2.0

Research focus: choices and trade-offs in building a 100% renewable all-sector European energy system

- Electricity
- Household and commercial heat
- Passenger and freight transport
- Industry process heat and feedstocks (e.g. for chemicals)

https://github.com/calliope-project/euro-calliope

A model of the European energy system built with Calliope

Europe modelled as 98 nodes

- PV and wind
- Hydropower
- Hourly timesteps

Normal science

Post-normal science

Funtowicz and Ravetz

